Reformat code using PyCharm
This commit is contained in:
@@ -1,27 +1,25 @@
|
||||
from datetime import datetime
|
||||
from queue import Queue, Empty
|
||||
from threading import Thread
|
||||
from time import time
|
||||
from urllib.parse import quote
|
||||
from time import time
|
||||
from datetime import datetime
|
||||
from queue import Queue, Empty
|
||||
from threading import Thread
|
||||
from re import findall
|
||||
|
||||
from curl_cffi.requests import post
|
||||
|
||||
cf_clearance = ''
|
||||
user_agent = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/112.0.0.0 Safari/537.36'
|
||||
user_agent = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/112.0.0.0 Safari/537.36'
|
||||
|
||||
|
||||
class PhindResponse:
|
||||
|
||||
class Completion:
|
||||
|
||||
class Choices:
|
||||
def __init__(self, choice: dict) -> None:
|
||||
self.text = choice['text']
|
||||
self.content = self.text.encode()
|
||||
self.index = choice['index']
|
||||
self.logprobs = choice['logprobs']
|
||||
self.finish_reason = choice['finish_reason']
|
||||
|
||||
self.text = choice['text']
|
||||
self.content = self.text.encode()
|
||||
self.index = choice['index']
|
||||
self.logprobs = choice['logprobs']
|
||||
self.finish_reason = choice['finish_reason']
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f'''<__main__.APIResponse.Completion.Choices(\n text = {self.text.encode()},\n index = {self.index},\n logprobs = {self.logprobs},\n finish_reason = {self.finish_reason})object at 0x1337>'''
|
||||
|
||||
@@ -30,34 +28,33 @@ class PhindResponse:
|
||||
|
||||
class Usage:
|
||||
def __init__(self, usage_dict: dict) -> None:
|
||||
self.prompt_tokens = usage_dict['prompt_tokens']
|
||||
self.completion_tokens = usage_dict['completion_tokens']
|
||||
self.total_tokens = usage_dict['total_tokens']
|
||||
self.prompt_tokens = usage_dict['prompt_tokens']
|
||||
self.completion_tokens = usage_dict['completion_tokens']
|
||||
self.total_tokens = usage_dict['total_tokens']
|
||||
|
||||
def __repr__(self):
|
||||
return f'''<__main__.APIResponse.Usage(\n prompt_tokens = {self.prompt_tokens},\n completion_tokens = {self.completion_tokens},\n total_tokens = {self.total_tokens})object at 0x1337>'''
|
||||
|
||||
|
||||
def __init__(self, response_dict: dict) -> None:
|
||||
|
||||
self.response_dict = response_dict
|
||||
self.id = response_dict['id']
|
||||
self.object = response_dict['object']
|
||||
self.created = response_dict['created']
|
||||
self.model = response_dict['model']
|
||||
self.completion = self.Completion(response_dict['choices'])
|
||||
self.usage = self.Usage(response_dict['usage'])
|
||||
self.response_dict = response_dict
|
||||
self.id = response_dict['id']
|
||||
self.object = response_dict['object']
|
||||
self.created = response_dict['created']
|
||||
self.model = response_dict['model']
|
||||
self.completion = self.Completion(response_dict['choices'])
|
||||
self.usage = self.Usage(response_dict['usage'])
|
||||
|
||||
def json(self) -> dict:
|
||||
return self.response_dict
|
||||
|
||||
|
||||
class Search:
|
||||
def create(prompt: str, actualSearch: bool = True, language: str = 'en') -> dict: # None = no search
|
||||
def create(prompt: str, actualSearch: bool = True, language: str = 'en') -> dict: # None = no search
|
||||
if user_agent == '':
|
||||
raise ValueError('user_agent must be set, refer to documentation')
|
||||
if cf_clearance == '' :
|
||||
if cf_clearance == '':
|
||||
raise ValueError('cf_clearance must be set, refer to documentation')
|
||||
|
||||
|
||||
if not actualSearch:
|
||||
return {
|
||||
'_type': 'SearchResponse',
|
||||
@@ -75,7 +72,7 @@ class Search:
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
headers = {
|
||||
'authority': 'www.phind.com',
|
||||
'accept': '*/*',
|
||||
@@ -91,8 +88,8 @@ class Search:
|
||||
'sec-fetch-site': 'same-origin',
|
||||
'user-agent': user_agent
|
||||
}
|
||||
|
||||
return post('https://www.phind.com/api/bing/search', headers = headers, json = {
|
||||
|
||||
return post('https://www.phind.com/api/bing/search', headers=headers, json={
|
||||
'q': prompt,
|
||||
'userRankList': {},
|
||||
'browserLanguage': language}).json()['rawBingResults']
|
||||
@@ -100,45 +97,45 @@ class Search:
|
||||
|
||||
class Completion:
|
||||
def create(
|
||||
model = 'gpt-4',
|
||||
prompt: str = '',
|
||||
results: dict = None,
|
||||
creative: bool = False,
|
||||
detailed: bool = False,
|
||||
codeContext: str = '',
|
||||
language: str = 'en') -> PhindResponse:
|
||||
|
||||
if user_agent == '' :
|
||||
model='gpt-4',
|
||||
prompt: str = '',
|
||||
results: dict = None,
|
||||
creative: bool = False,
|
||||
detailed: bool = False,
|
||||
codeContext: str = '',
|
||||
language: str = 'en') -> PhindResponse:
|
||||
|
||||
if user_agent == '':
|
||||
raise ValueError('user_agent must be set, refer to documentation')
|
||||
|
||||
if cf_clearance == '' :
|
||||
if cf_clearance == '':
|
||||
raise ValueError('cf_clearance must be set, refer to documentation')
|
||||
|
||||
|
||||
if results is None:
|
||||
results = Search.create(prompt, actualSearch = True)
|
||||
|
||||
results = Search.create(prompt, actualSearch=True)
|
||||
|
||||
if len(codeContext) > 2999:
|
||||
raise ValueError('codeContext must be less than 3000 characters')
|
||||
|
||||
|
||||
models = {
|
||||
'gpt-4' : 'expert',
|
||||
'gpt-3.5-turbo' : 'intermediate',
|
||||
'gpt-4': 'expert',
|
||||
'gpt-3.5-turbo': 'intermediate',
|
||||
'gpt-3.5': 'intermediate',
|
||||
}
|
||||
|
||||
|
||||
json_data = {
|
||||
'question' : prompt,
|
||||
'bingResults' : results, #response.json()['rawBingResults'],
|
||||
'codeContext' : codeContext,
|
||||
'question': prompt,
|
||||
'bingResults': results, # response.json()['rawBingResults'],
|
||||
'codeContext': codeContext,
|
||||
'options': {
|
||||
'skill' : models[model],
|
||||
'date' : datetime.now().strftime("%d/%m/%Y"),
|
||||
'skill': models[model],
|
||||
'date': datetime.now().strftime("%d/%m/%Y"),
|
||||
'language': language,
|
||||
'detailed': detailed,
|
||||
'creative': creative
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
headers = {
|
||||
'authority': 'www.phind.com',
|
||||
'accept': '*/*',
|
||||
@@ -155,50 +152,51 @@ class Completion:
|
||||
'sec-fetch-site': 'same-origin',
|
||||
'user-agent': user_agent
|
||||
}
|
||||
|
||||
|
||||
completion = ''
|
||||
response = post('https://www.phind.com/api/infer/answer', headers = headers, json = json_data, timeout=99999, impersonate='chrome110')
|
||||
response = post('https://www.phind.com/api/infer/answer', headers=headers, json=json_data, timeout=99999,
|
||||
impersonate='chrome110')
|
||||
for line in response.text.split('\r\n\r\n'):
|
||||
completion += (line.replace('data: ', ''))
|
||||
|
||||
|
||||
return PhindResponse({
|
||||
'id' : f'cmpl-1337-{int(time())}',
|
||||
'object' : 'text_completion',
|
||||
'created': int(time()),
|
||||
'model' : models[model],
|
||||
'id': f'cmpl-1337-{int(time())}',
|
||||
'object': 'text_completion',
|
||||
'created': int(time()),
|
||||
'model': models[model],
|
||||
'choices': [{
|
||||
'text' : completion,
|
||||
'index' : 0,
|
||||
'logprobs' : None,
|
||||
'finish_reason' : 'stop'
|
||||
}],
|
||||
'text': completion,
|
||||
'index': 0,
|
||||
'logprobs': None,
|
||||
'finish_reason': 'stop'
|
||||
}],
|
||||
'usage': {
|
||||
'prompt_tokens' : len(prompt),
|
||||
'completion_tokens' : len(completion),
|
||||
'total_tokens' : len(prompt) + len(completion)
|
||||
'prompt_tokens': len(prompt),
|
||||
'completion_tokens': len(completion),
|
||||
'total_tokens': len(prompt) + len(completion)
|
||||
}
|
||||
})
|
||||
|
||||
|
||||
|
||||
class StreamingCompletion:
|
||||
message_queue = Queue()
|
||||
message_queue = Queue()
|
||||
stream_completed = False
|
||||
|
||||
|
||||
def request(model, prompt, results, creative, detailed, codeContext, language) -> None:
|
||||
|
||||
|
||||
models = {
|
||||
'gpt-4' : 'expert',
|
||||
'gpt-3.5-turbo' : 'intermediate',
|
||||
'gpt-4': 'expert',
|
||||
'gpt-3.5-turbo': 'intermediate',
|
||||
'gpt-3.5': 'intermediate',
|
||||
}
|
||||
|
||||
json_data = {
|
||||
'question' : prompt,
|
||||
'bingResults' : results,
|
||||
'codeContext' : codeContext,
|
||||
'question': prompt,
|
||||
'bingResults': results,
|
||||
'codeContext': codeContext,
|
||||
'options': {
|
||||
'skill' : models[model],
|
||||
'date' : datetime.now().strftime("%d/%m/%Y"),
|
||||
'skill': models[model],
|
||||
'date': datetime.now().strftime("%d/%m/%Y"),
|
||||
'language': language,
|
||||
'detailed': detailed,
|
||||
'creative': creative
|
||||
@@ -221,65 +219,65 @@ class StreamingCompletion:
|
||||
'sec-fetch-site': 'same-origin',
|
||||
'user-agent': user_agent
|
||||
}
|
||||
|
||||
response = post('https://www.phind.com/api/infer/answer',
|
||||
headers = headers, json = json_data, timeout=99999, impersonate='chrome110', content_callback=StreamingCompletion.handle_stream_response)
|
||||
|
||||
response = post('https://www.phind.com/api/infer/answer',
|
||||
headers=headers, json=json_data, timeout=99999, impersonate='chrome110',
|
||||
content_callback=StreamingCompletion.handle_stream_response)
|
||||
|
||||
StreamingCompletion.stream_completed = True
|
||||
|
||||
@staticmethod
|
||||
def create(
|
||||
model : str = 'gpt-4',
|
||||
prompt : str = '',
|
||||
results : dict = None,
|
||||
creative : bool = False,
|
||||
detailed : bool = False,
|
||||
codeContext : str = '',
|
||||
language : str = 'en'):
|
||||
|
||||
model: str = 'gpt-4',
|
||||
prompt: str = '',
|
||||
results: dict = None,
|
||||
creative: bool = False,
|
||||
detailed: bool = False,
|
||||
codeContext: str = '',
|
||||
language: str = 'en'):
|
||||
|
||||
if user_agent == '':
|
||||
raise ValueError('user_agent must be set, refer to documentation')
|
||||
if cf_clearance == '' :
|
||||
if cf_clearance == '':
|
||||
raise ValueError('cf_clearance must be set, refer to documentation')
|
||||
|
||||
|
||||
if results is None:
|
||||
results = Search.create(prompt, actualSearch = True)
|
||||
|
||||
results = Search.create(prompt, actualSearch=True)
|
||||
|
||||
if len(codeContext) > 2999:
|
||||
raise ValueError('codeContext must be less than 3000 characters')
|
||||
|
||||
Thread(target = StreamingCompletion.request, args = [
|
||||
|
||||
Thread(target=StreamingCompletion.request, args=[
|
||||
model, prompt, results, creative, detailed, codeContext, language]).start()
|
||||
|
||||
|
||||
while StreamingCompletion.stream_completed != True or not StreamingCompletion.message_queue.empty():
|
||||
try:
|
||||
chunk = StreamingCompletion.message_queue.get(timeout=0)
|
||||
|
||||
if chunk == b'data: \r\ndata: \r\ndata: \r\n\r\n':
|
||||
chunk = b'data: \n\n\r\n\r\n'
|
||||
|
||||
|
||||
chunk = chunk.decode()
|
||||
|
||||
|
||||
chunk = chunk.replace('data: \r\n\r\ndata: ', 'data: \n')
|
||||
chunk = chunk.replace('\r\ndata: \r\ndata: \r\n\r\n', '\n\n\r\n\r\n')
|
||||
chunk = chunk.replace('data: ', '').replace('\r\n\r\n', '')
|
||||
|
||||
|
||||
yield PhindResponse({
|
||||
'id' : f'cmpl-1337-{int(time())}',
|
||||
'object' : 'text_completion',
|
||||
'created': int(time()),
|
||||
'model' : model,
|
||||
'id': f'cmpl-1337-{int(time())}',
|
||||
'object': 'text_completion',
|
||||
'created': int(time()),
|
||||
'model': model,
|
||||
'choices': [{
|
||||
'text' : chunk,
|
||||
'index' : 0,
|
||||
'logprobs' : None,
|
||||
'finish_reason' : 'stop'
|
||||
}],
|
||||
'text': chunk,
|
||||
'index': 0,
|
||||
'logprobs': None,
|
||||
'finish_reason': 'stop'
|
||||
}],
|
||||
'usage': {
|
||||
'prompt_tokens' : len(prompt),
|
||||
'completion_tokens' : len(chunk),
|
||||
'total_tokens' : len(prompt) + len(chunk)
|
||||
'prompt_tokens': len(prompt),
|
||||
'completion_tokens': len(chunk),
|
||||
'total_tokens': len(prompt) + len(chunk)
|
||||
}
|
||||
})
|
||||
|
||||
|
||||
Reference in New Issue
Block a user