Merging PR_218 openai_rev package with new streamlit chat app
This commit is contained in:
@@ -0,0 +1,323 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/adapters/orc/options.h"
|
||||
#include "arrow/io/interfaces.h"
|
||||
#include "arrow/memory_pool.h"
|
||||
#include "arrow/record_batch.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/type.h"
|
||||
#include "arrow/type_fwd.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace adapters {
|
||||
namespace orc {
|
||||
|
||||
/// \brief Information about an ORC stripe
|
||||
struct StripeInformation {
|
||||
/// \brief Offset of the stripe from the start of the file, in bytes
|
||||
int64_t offset;
|
||||
/// \brief Length of the stripe, in bytes
|
||||
int64_t length;
|
||||
/// \brief Number of rows in the stripe
|
||||
int64_t num_rows;
|
||||
/// \brief Index of the first row of the stripe
|
||||
int64_t first_row_id;
|
||||
};
|
||||
|
||||
/// \class ORCFileReader
|
||||
/// \brief Read an Arrow Table or RecordBatch from an ORC file.
|
||||
class ARROW_EXPORT ORCFileReader {
|
||||
public:
|
||||
~ORCFileReader();
|
||||
|
||||
/// \brief Creates a new ORC reader
|
||||
///
|
||||
/// \param[in] file the data source
|
||||
/// \param[in] pool a MemoryPool to use for buffer allocations
|
||||
/// \return the returned reader object
|
||||
static Result<std::unique_ptr<ORCFileReader>> Open(
|
||||
const std::shared_ptr<io::RandomAccessFile>& file, MemoryPool* pool);
|
||||
|
||||
/// \brief Return the schema read from the ORC file
|
||||
///
|
||||
/// \return the returned Schema object
|
||||
Result<std::shared_ptr<Schema>> ReadSchema();
|
||||
|
||||
/// \brief Read the file as a Table
|
||||
///
|
||||
/// The table will be composed of one record batch per stripe.
|
||||
///
|
||||
/// \return the returned Table
|
||||
Result<std::shared_ptr<Table>> Read();
|
||||
|
||||
/// \brief Read the file as a Table
|
||||
///
|
||||
/// The table will be composed of one record batch per stripe.
|
||||
///
|
||||
/// \param[in] schema the Table schema
|
||||
/// \return the returned Table
|
||||
Result<std::shared_ptr<Table>> Read(const std::shared_ptr<Schema>& schema);
|
||||
|
||||
/// \brief Read the file as a Table
|
||||
///
|
||||
/// The table will be composed of one record batch per stripe.
|
||||
///
|
||||
/// \param[in] include_indices the selected field indices to read
|
||||
/// \return the returned Table
|
||||
Result<std::shared_ptr<Table>> Read(const std::vector<int>& include_indices);
|
||||
|
||||
/// \brief Read the file as a Table
|
||||
///
|
||||
/// The table will be composed of one record batch per stripe.
|
||||
///
|
||||
/// \param[in] include_names the selected field names to read
|
||||
/// \return the returned Table
|
||||
Result<std::shared_ptr<Table>> Read(const std::vector<std::string>& include_names);
|
||||
|
||||
/// \brief Read the file as a Table
|
||||
///
|
||||
/// The table will be composed of one record batch per stripe.
|
||||
///
|
||||
/// \param[in] schema the Table schema
|
||||
/// \param[in] include_indices the selected field indices to read
|
||||
/// \return the returned Table
|
||||
Result<std::shared_ptr<Table>> Read(const std::shared_ptr<Schema>& schema,
|
||||
const std::vector<int>& include_indices);
|
||||
|
||||
/// \brief Read a single stripe as a RecordBatch
|
||||
///
|
||||
/// \param[in] stripe the stripe index
|
||||
/// \return the returned RecordBatch
|
||||
Result<std::shared_ptr<RecordBatch>> ReadStripe(int64_t stripe);
|
||||
|
||||
/// \brief Read a single stripe as a RecordBatch
|
||||
///
|
||||
/// \param[in] stripe the stripe index
|
||||
/// \param[in] include_indices the selected field indices to read
|
||||
/// \return the returned RecordBatch
|
||||
Result<std::shared_ptr<RecordBatch>> ReadStripe(
|
||||
int64_t stripe, const std::vector<int>& include_indices);
|
||||
|
||||
/// \brief Read a single stripe as a RecordBatch
|
||||
///
|
||||
/// \param[in] stripe the stripe index
|
||||
/// \param[in] include_names the selected field names to read
|
||||
/// \return the returned RecordBatch
|
||||
Result<std::shared_ptr<RecordBatch>> ReadStripe(
|
||||
int64_t stripe, const std::vector<std::string>& include_names);
|
||||
|
||||
/// \brief Seek to designated row. Invoke NextStripeReader() after seek
|
||||
/// will return stripe reader starting from designated row.
|
||||
///
|
||||
/// \param[in] row_number the rows number to seek
|
||||
Status Seek(int64_t row_number);
|
||||
|
||||
/// \brief Get a stripe level record batch iterator.
|
||||
///
|
||||
/// Each record batch will have up to `batch_size` rows.
|
||||
/// NextStripeReader serves as a fine grained alternative to ReadStripe
|
||||
/// which may cause OOM issues by loading the whole stripe into memory.
|
||||
///
|
||||
/// Note this will only read rows for the current stripe, not the entire
|
||||
/// file.
|
||||
///
|
||||
/// \param[in] batch_size the maximum number of rows in each record batch
|
||||
/// \return the returned stripe reader
|
||||
Result<std::shared_ptr<RecordBatchReader>> NextStripeReader(int64_t batch_size);
|
||||
|
||||
/// \brief Get a stripe level record batch iterator.
|
||||
///
|
||||
/// Each record batch will have up to `batch_size` rows.
|
||||
/// NextStripeReader serves as a fine grained alternative to ReadStripe
|
||||
/// which may cause OOM issues by loading the whole stripe into memory.
|
||||
///
|
||||
/// Note this will only read rows for the current stripe, not the entire
|
||||
/// file.
|
||||
///
|
||||
/// \param[in] batch_size the maximum number of rows in each record batch
|
||||
/// \param[in] include_indices the selected field indices to read
|
||||
/// \return the stripe reader
|
||||
Result<std::shared_ptr<RecordBatchReader>> NextStripeReader(
|
||||
int64_t batch_size, const std::vector<int>& include_indices);
|
||||
|
||||
/// \brief Get a record batch iterator for the entire file.
|
||||
///
|
||||
/// Each record batch will have up to `batch_size` rows.
|
||||
///
|
||||
/// \param[in] batch_size the maximum number of rows in each record batch
|
||||
/// \param[in] include_names the selected field names to read, if not empty
|
||||
/// (otherwise all fields are read)
|
||||
/// \return the record batch iterator
|
||||
Result<std::shared_ptr<RecordBatchReader>> GetRecordBatchReader(
|
||||
int64_t batch_size, const std::vector<std::string>& include_names);
|
||||
|
||||
/// \brief The number of stripes in the file
|
||||
int64_t NumberOfStripes();
|
||||
|
||||
/// \brief The number of rows in the file
|
||||
int64_t NumberOfRows();
|
||||
|
||||
/// \brief StripeInformation for each stripe.
|
||||
StripeInformation GetStripeInformation(int64_t stripe);
|
||||
|
||||
/// \brief Get the format version of the file.
|
||||
/// Currently known values are 0.11 and 0.12.
|
||||
///
|
||||
/// \return The FileVersion of the ORC file.
|
||||
FileVersion GetFileVersion();
|
||||
|
||||
/// \brief Get the software instance and version that wrote this file.
|
||||
///
|
||||
/// \return a user-facing string that specifies the software version
|
||||
std::string GetSoftwareVersion();
|
||||
|
||||
/// \brief Get the compression kind of the file.
|
||||
///
|
||||
/// \return The kind of compression in the ORC file.
|
||||
Result<Compression::type> GetCompression();
|
||||
|
||||
/// \brief Get the buffer size for the compression.
|
||||
///
|
||||
/// \return Number of bytes to buffer for the compression codec.
|
||||
int64_t GetCompressionSize();
|
||||
|
||||
/// \brief Get the number of rows per an entry in the row index.
|
||||
/// \return the number of rows per an entry in the row index or 0 if there
|
||||
/// is no row index.
|
||||
int64_t GetRowIndexStride();
|
||||
|
||||
/// \brief Get ID of writer that generated the file.
|
||||
///
|
||||
/// \return UNKNOWN_WRITER if the writer ID is undefined
|
||||
WriterId GetWriterId();
|
||||
|
||||
/// \brief Get the writer id value when getWriterId() returns an unknown writer.
|
||||
///
|
||||
/// \return the integer value of the writer ID.
|
||||
int32_t GetWriterIdValue();
|
||||
|
||||
/// \brief Get the version of the writer.
|
||||
///
|
||||
/// \return the version of the writer.
|
||||
|
||||
WriterVersion GetWriterVersion();
|
||||
|
||||
/// \brief Get the number of stripe statistics in the file.
|
||||
///
|
||||
/// \return the number of stripe statistics
|
||||
int64_t GetNumberOfStripeStatistics();
|
||||
|
||||
/// \brief Get the length of the data stripes in the file.
|
||||
///
|
||||
/// \return return the number of bytes in stripes
|
||||
int64_t GetContentLength();
|
||||
|
||||
/// \brief Get the length of the file stripe statistics.
|
||||
///
|
||||
/// \return the number of compressed bytes in the file stripe statistics
|
||||
int64_t GetStripeStatisticsLength();
|
||||
|
||||
/// \brief Get the length of the file footer.
|
||||
///
|
||||
/// \return the number of compressed bytes in the file footer
|
||||
int64_t GetFileFooterLength();
|
||||
|
||||
/// \brief Get the length of the file postscript.
|
||||
///
|
||||
/// \return the number of bytes in the file postscript
|
||||
int64_t GetFilePostscriptLength();
|
||||
|
||||
/// \brief Get the total length of the file.
|
||||
///
|
||||
/// \return the number of bytes in the file
|
||||
int64_t GetFileLength();
|
||||
|
||||
/// \brief Get the serialized file tail.
|
||||
/// Usefull if another reader of the same file wants to avoid re-reading
|
||||
/// the file tail. See ReadOptions.SetSerializedFileTail().
|
||||
///
|
||||
/// \return a string of bytes with the file tail
|
||||
std::string GetSerializedFileTail();
|
||||
|
||||
/// \brief Return the metadata read from the ORC file
|
||||
///
|
||||
/// \return A KeyValueMetadata object containing the ORC metadata
|
||||
Result<std::shared_ptr<const KeyValueMetadata>> ReadMetadata();
|
||||
|
||||
private:
|
||||
class Impl;
|
||||
std::unique_ptr<Impl> impl_;
|
||||
ORCFileReader();
|
||||
};
|
||||
|
||||
/// \class ORCFileWriter
|
||||
/// \brief Write an Arrow Table or RecordBatch to an ORC file.
|
||||
class ARROW_EXPORT ORCFileWriter {
|
||||
public:
|
||||
~ORCFileWriter();
|
||||
/// \brief Creates a new ORC writer.
|
||||
///
|
||||
/// \param[in] output_stream a pointer to the io::OutputStream to write into
|
||||
/// \param[in] write_options the ORC writer options for Arrow
|
||||
/// \return the returned writer object
|
||||
static Result<std::unique_ptr<ORCFileWriter>> Open(
|
||||
io::OutputStream* output_stream,
|
||||
const WriteOptions& write_options = WriteOptions());
|
||||
|
||||
/// \brief Write a table. This can be called multiple times.
|
||||
///
|
||||
/// Tables passed in subsequent calls must match the schema of the table that was
|
||||
/// written first.
|
||||
///
|
||||
/// \param[in] table the Arrow table from which data is extracted.
|
||||
/// \return Status
|
||||
Status Write(const Table& table);
|
||||
|
||||
/// \brief Write a RecordBatch. This can be called multiple times.
|
||||
///
|
||||
/// RecordBatches passed in subsequent calls must match the schema of the
|
||||
/// RecordBatch that was written first.
|
||||
///
|
||||
/// \param[in] record_batch the Arrow RecordBatch from which data is extracted.
|
||||
/// \return Status
|
||||
Status Write(const RecordBatch& record_batch);
|
||||
|
||||
/// \brief Close an ORC writer (orc::Writer)
|
||||
///
|
||||
/// \return Status
|
||||
Status Close();
|
||||
|
||||
private:
|
||||
class Impl;
|
||||
std::unique_ptr<Impl> impl_;
|
||||
|
||||
private:
|
||||
ORCFileWriter();
|
||||
};
|
||||
|
||||
} // namespace orc
|
||||
} // namespace adapters
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,120 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/io/interfaces.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/util/type_fwd.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
namespace adapters {
|
||||
|
||||
namespace orc {
|
||||
|
||||
enum class WriterId : int32_t {
|
||||
kOrcJava = 0,
|
||||
kOrcCpp = 1,
|
||||
kPresto = 2,
|
||||
kScritchleyGo = 3,
|
||||
kTrino = 4,
|
||||
kUnknown = INT32_MAX
|
||||
};
|
||||
|
||||
enum class WriterVersion : int32_t {
|
||||
kOriginal = 0,
|
||||
kHive8732 = 1,
|
||||
kHive4243 = 2,
|
||||
kHive12055 = 3,
|
||||
kHive13083 = 4,
|
||||
kOrc101 = 5,
|
||||
kOrc135 = 6,
|
||||
kOrc517 = 7,
|
||||
kOrc203 = 8,
|
||||
kOrc14 = 9,
|
||||
kMax = INT32_MAX
|
||||
};
|
||||
|
||||
enum class CompressionStrategy : int32_t { kSpeed = 0, kCompression };
|
||||
|
||||
class ARROW_EXPORT FileVersion {
|
||||
private:
|
||||
int32_t major_version_;
|
||||
int32_t minor_version_;
|
||||
|
||||
public:
|
||||
static const FileVersion& v_0_11();
|
||||
static const FileVersion& v_0_12();
|
||||
|
||||
FileVersion(int32_t major, int32_t minor)
|
||||
: major_version_(major), minor_version_(minor) {}
|
||||
|
||||
/**
|
||||
* Get major version
|
||||
*/
|
||||
int32_t major_version() const { return this->major_version_; }
|
||||
|
||||
/**
|
||||
* Get minor version
|
||||
*/
|
||||
int32_t minor_version() const { return this->minor_version_; }
|
||||
|
||||
bool operator==(const FileVersion& right) const {
|
||||
return this->major_version() == right.major_version() &&
|
||||
this->minor_version() == right.minor_version();
|
||||
}
|
||||
|
||||
bool operator!=(const FileVersion& right) const { return !(*this == right); }
|
||||
|
||||
std::string ToString() const;
|
||||
};
|
||||
|
||||
/// Options for the ORC Writer
|
||||
struct ARROW_EXPORT WriteOptions {
|
||||
/// Number of rows the ORC writer writes at a time, default 1024
|
||||
int64_t batch_size = 1024;
|
||||
/// Which ORC file version to use, default FileVersion(0, 12)
|
||||
FileVersion file_version = FileVersion(0, 12);
|
||||
/// Size of each ORC stripe in bytes, default 64 MiB
|
||||
int64_t stripe_size = 64 * 1024 * 1024;
|
||||
/// The compression codec of the ORC file, there is no compression by default
|
||||
Compression::type compression = Compression::UNCOMPRESSED;
|
||||
/// The size of each compression block in bytes, default 64 KiB
|
||||
int64_t compression_block_size = 64 * 1024;
|
||||
/// The compression strategy i.e. speed vs size reduction, default
|
||||
/// CompressionStrategy::kSpeed
|
||||
CompressionStrategy compression_strategy = CompressionStrategy::kSpeed;
|
||||
/// The number of rows per an entry in the row index, default 10000
|
||||
int64_t row_index_stride = 10000;
|
||||
/// The padding tolerance, default 0.0
|
||||
double padding_tolerance = 0.0;
|
||||
/// The dictionary key size threshold. 0 to disable dictionary encoding.
|
||||
/// 1 to always enable dictionary encoding, default 0.0
|
||||
double dictionary_key_size_threshold = 0.0;
|
||||
/// The array of columns that use the bloom filter, default empty
|
||||
std::vector<int64_t> bloom_filter_columns;
|
||||
/// The upper limit of the false-positive rate of the bloom filter, default 0.05
|
||||
double bloom_filter_fpp = 0.05;
|
||||
};
|
||||
|
||||
} // namespace orc
|
||||
} // namespace adapters
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,128 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
|
||||
#include "tensorflow/core/framework/op.h"
|
||||
|
||||
#include "arrow/type.h"
|
||||
|
||||
// These utilities are supposed to be included in TensorFlow operators
|
||||
// that need to be compiled separately from Arrow because of ABI issues.
|
||||
// They therefore need to be header-only.
|
||||
|
||||
namespace arrow {
|
||||
|
||||
namespace adapters {
|
||||
|
||||
namespace tensorflow {
|
||||
|
||||
Status GetArrowType(::tensorflow::DataType dtype, std::shared_ptr<DataType>* out) {
|
||||
switch (dtype) {
|
||||
case ::tensorflow::DT_BOOL:
|
||||
*out = arrow::boolean();
|
||||
break;
|
||||
case ::tensorflow::DT_FLOAT:
|
||||
*out = arrow::float32();
|
||||
break;
|
||||
case ::tensorflow::DT_DOUBLE:
|
||||
*out = arrow::float64();
|
||||
break;
|
||||
case ::tensorflow::DT_HALF:
|
||||
*out = arrow::float16();
|
||||
break;
|
||||
case ::tensorflow::DT_INT8:
|
||||
*out = arrow::int8();
|
||||
break;
|
||||
case ::tensorflow::DT_INT16:
|
||||
*out = arrow::int16();
|
||||
break;
|
||||
case ::tensorflow::DT_INT32:
|
||||
*out = arrow::int32();
|
||||
break;
|
||||
case ::tensorflow::DT_INT64:
|
||||
*out = arrow::int64();
|
||||
break;
|
||||
case ::tensorflow::DT_UINT8:
|
||||
*out = arrow::uint8();
|
||||
break;
|
||||
case ::tensorflow::DT_UINT16:
|
||||
*out = arrow::uint16();
|
||||
break;
|
||||
case ::tensorflow::DT_UINT32:
|
||||
*out = arrow::uint32();
|
||||
break;
|
||||
case ::tensorflow::DT_UINT64:
|
||||
*out = arrow::uint64();
|
||||
break;
|
||||
default:
|
||||
return Status::TypeError("TensorFlow data type is not supported");
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status GetTensorFlowType(std::shared_ptr<DataType> dtype, ::tensorflow::DataType* out) {
|
||||
switch (dtype->id()) {
|
||||
case Type::BOOL:
|
||||
*out = ::tensorflow::DT_BOOL;
|
||||
break;
|
||||
case Type::UINT8:
|
||||
*out = ::tensorflow::DT_UINT8;
|
||||
break;
|
||||
case Type::INT8:
|
||||
*out = ::tensorflow::DT_INT8;
|
||||
break;
|
||||
case Type::UINT16:
|
||||
*out = ::tensorflow::DT_UINT16;
|
||||
break;
|
||||
case Type::INT16:
|
||||
*out = ::tensorflow::DT_INT16;
|
||||
break;
|
||||
case Type::UINT32:
|
||||
*out = ::tensorflow::DT_UINT32;
|
||||
break;
|
||||
case Type::INT32:
|
||||
*out = ::tensorflow::DT_INT32;
|
||||
break;
|
||||
case Type::UINT64:
|
||||
*out = ::tensorflow::DT_UINT64;
|
||||
break;
|
||||
case Type::INT64:
|
||||
*out = ::tensorflow::DT_INT64;
|
||||
break;
|
||||
case Type::HALF_FLOAT:
|
||||
*out = ::tensorflow::DT_HALF;
|
||||
break;
|
||||
case Type::FLOAT:
|
||||
*out = ::tensorflow::DT_FLOAT;
|
||||
break;
|
||||
case Type::DOUBLE:
|
||||
*out = ::tensorflow::DT_DOUBLE;
|
||||
break;
|
||||
default:
|
||||
return Status::TypeError("Arrow data type is not supported");
|
||||
}
|
||||
return arrow::Status::OK();
|
||||
}
|
||||
|
||||
} // namespace tensorflow
|
||||
|
||||
} // namespace adapters
|
||||
|
||||
} // namespace arrow
|
||||
46
venv/lib/python3.9/site-packages/pyarrow/include/arrow/api.h
Normal file
46
venv/lib/python3.9/site-packages/pyarrow/include/arrow/api.h
Normal file
@@ -0,0 +1,46 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// Coarse public API while the library is in development
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "arrow/array.h" // IYWU pragma: export
|
||||
#include "arrow/array/concatenate.h" // IYWU pragma: export
|
||||
#include "arrow/buffer.h" // IYWU pragma: export
|
||||
#include "arrow/builder.h" // IYWU pragma: export
|
||||
#include "arrow/chunked_array.h" // IYWU pragma: export
|
||||
#include "arrow/compare.h" // IYWU pragma: export
|
||||
#include "arrow/config.h" // IYWU pragma: export
|
||||
#include "arrow/datum.h" // IYWU pragma: export
|
||||
#include "arrow/extension_type.h" // IYWU pragma: export
|
||||
#include "arrow/memory_pool.h" // IYWU pragma: export
|
||||
#include "arrow/pretty_print.h" // IYWU pragma: export
|
||||
#include "arrow/record_batch.h" // IYWU pragma: export
|
||||
#include "arrow/result.h" // IYWU pragma: export
|
||||
#include "arrow/status.h" // IYWU pragma: export
|
||||
#include "arrow/table.h" // IYWU pragma: export
|
||||
#include "arrow/table_builder.h" // IYWU pragma: export
|
||||
#include "arrow/tensor.h" // IYWU pragma: export
|
||||
#include "arrow/type.h" // IYWU pragma: export
|
||||
#include "arrow/util/key_value_metadata.h" // IWYU pragma: export
|
||||
#include "arrow/visit_array_inline.h" // IYWU pragma: export
|
||||
#include "arrow/visit_scalar_inline.h" // IYWU pragma: export
|
||||
#include "arrow/visitor.h" // IYWU pragma: export
|
||||
|
||||
/// \brief Top-level namespace for Apache Arrow C++ API
|
||||
namespace arrow {}
|
||||
@@ -0,0 +1,44 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// Kitchen-sink public API for arrow::Array data structures. C++ library code
|
||||
// (especially header files) in Apache Arrow should use more specific headers
|
||||
// unless it's a file that uses most or all Array types in which case using
|
||||
// arrow/array.h is fine.
|
||||
|
||||
#pragma once
|
||||
|
||||
/// \defgroup numeric-arrays Concrete classes for numeric arrays
|
||||
/// @{
|
||||
/// @}
|
||||
|
||||
/// \defgroup binary-arrays Concrete classes for binary/string arrays
|
||||
/// @{
|
||||
/// @}
|
||||
|
||||
/// \defgroup nested-arrays Concrete classes for nested arrays
|
||||
/// @{
|
||||
/// @}
|
||||
|
||||
#include "arrow/array/array_base.h" // IWYU pragma: keep
|
||||
#include "arrow/array/array_binary.h" // IWYU pragma: keep
|
||||
#include "arrow/array/array_decimal.h" // IWYU pragma: keep
|
||||
#include "arrow/array/array_dict.h" // IWYU pragma: keep
|
||||
#include "arrow/array/array_nested.h" // IWYU pragma: keep
|
||||
#include "arrow/array/array_primitive.h" // IWYU pragma: keep
|
||||
#include "arrow/array/data.h" // IWYU pragma: keep
|
||||
#include "arrow/array/util.h" // IWYU pragma: keep
|
||||
@@ -0,0 +1,264 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <iosfwd>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/array/data.h"
|
||||
#include "arrow/buffer.h"
|
||||
#include "arrow/compare.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/type.h"
|
||||
#include "arrow/util/bit_util.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
#include "arrow/visitor.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// User array accessor types
|
||||
|
||||
/// \brief Array base type
|
||||
/// Immutable data array with some logical type and some length.
|
||||
///
|
||||
/// Any memory is owned by the respective Buffer instance (or its parents).
|
||||
///
|
||||
/// The base class is only required to have a null bitmap buffer if the null
|
||||
/// count is greater than 0
|
||||
///
|
||||
/// If known, the null count can be provided in the base Array constructor. If
|
||||
/// the null count is not known, pass -1 to indicate that the null count is to
|
||||
/// be computed on the first call to null_count()
|
||||
class ARROW_EXPORT Array {
|
||||
public:
|
||||
virtual ~Array() = default;
|
||||
|
||||
/// \brief Return true if value at index is null. Does not boundscheck
|
||||
bool IsNull(int64_t i) const {
|
||||
return null_bitmap_data_ != NULLPTR
|
||||
? !bit_util::GetBit(null_bitmap_data_, i + data_->offset)
|
||||
: data_->null_count == data_->length;
|
||||
}
|
||||
|
||||
/// \brief Return true if value at index is valid (not null). Does not
|
||||
/// boundscheck
|
||||
bool IsValid(int64_t i) const {
|
||||
return null_bitmap_data_ != NULLPTR
|
||||
? bit_util::GetBit(null_bitmap_data_, i + data_->offset)
|
||||
: data_->null_count != data_->length;
|
||||
}
|
||||
|
||||
/// \brief Return a Scalar containing the value of this array at i
|
||||
Result<std::shared_ptr<Scalar>> GetScalar(int64_t i) const;
|
||||
|
||||
/// Size in the number of elements this array contains.
|
||||
int64_t length() const { return data_->length; }
|
||||
|
||||
/// A relative position into another array's data, to enable zero-copy
|
||||
/// slicing. This value defaults to zero
|
||||
int64_t offset() const { return data_->offset; }
|
||||
|
||||
/// The number of null entries in the array. If the null count was not known
|
||||
/// at time of construction (and set to a negative value), then the null
|
||||
/// count will be computed and cached on the first invocation of this
|
||||
/// function
|
||||
int64_t null_count() const;
|
||||
|
||||
std::shared_ptr<DataType> type() const { return data_->type; }
|
||||
Type::type type_id() const { return data_->type->id(); }
|
||||
|
||||
/// Buffer for the validity (null) bitmap, if any. Note that Union types
|
||||
/// never have a null bitmap.
|
||||
///
|
||||
/// Note that for `null_count == 0` or for null type, this will be null.
|
||||
/// This buffer does not account for any slice offset
|
||||
const std::shared_ptr<Buffer>& null_bitmap() const { return data_->buffers[0]; }
|
||||
|
||||
/// Raw pointer to the null bitmap.
|
||||
///
|
||||
/// Note that for `null_count == 0` or for null type, this will be null.
|
||||
/// This buffer does not account for any slice offset
|
||||
const uint8_t* null_bitmap_data() const { return null_bitmap_data_; }
|
||||
|
||||
/// Equality comparison with another array
|
||||
bool Equals(const Array& arr, const EqualOptions& = EqualOptions::Defaults()) const;
|
||||
bool Equals(const std::shared_ptr<Array>& arr,
|
||||
const EqualOptions& = EqualOptions::Defaults()) const;
|
||||
|
||||
/// \brief Return the formatted unified diff of arrow::Diff between this
|
||||
/// Array and another Array
|
||||
std::string Diff(const Array& other) const;
|
||||
|
||||
/// Approximate equality comparison with another array
|
||||
///
|
||||
/// epsilon is only used if this is FloatArray or DoubleArray
|
||||
bool ApproxEquals(const std::shared_ptr<Array>& arr,
|
||||
const EqualOptions& = EqualOptions::Defaults()) const;
|
||||
bool ApproxEquals(const Array& arr,
|
||||
const EqualOptions& = EqualOptions::Defaults()) const;
|
||||
|
||||
/// Compare if the range of slots specified are equal for the given array and
|
||||
/// this array. end_idx exclusive. This methods does not bounds check.
|
||||
bool RangeEquals(int64_t start_idx, int64_t end_idx, int64_t other_start_idx,
|
||||
const Array& other,
|
||||
const EqualOptions& = EqualOptions::Defaults()) const;
|
||||
bool RangeEquals(int64_t start_idx, int64_t end_idx, int64_t other_start_idx,
|
||||
const std::shared_ptr<Array>& other,
|
||||
const EqualOptions& = EqualOptions::Defaults()) const;
|
||||
bool RangeEquals(const Array& other, int64_t start_idx, int64_t end_idx,
|
||||
int64_t other_start_idx,
|
||||
const EqualOptions& = EqualOptions::Defaults()) const;
|
||||
bool RangeEquals(const std::shared_ptr<Array>& other, int64_t start_idx,
|
||||
int64_t end_idx, int64_t other_start_idx,
|
||||
const EqualOptions& = EqualOptions::Defaults()) const;
|
||||
|
||||
/// \brief Apply the ArrayVisitor::Visit() method specialized to the array type
|
||||
Status Accept(ArrayVisitor* visitor) const;
|
||||
|
||||
/// Construct a zero-copy view of this array with the given type.
|
||||
///
|
||||
/// This method checks if the types are layout-compatible.
|
||||
/// Nested types are traversed in depth-first order. Data buffers must have
|
||||
/// the same item sizes, even though the logical types may be different.
|
||||
/// An error is returned if the types are not layout-compatible.
|
||||
Result<std::shared_ptr<Array>> View(const std::shared_ptr<DataType>& type) const;
|
||||
|
||||
/// Construct a zero-copy slice of the array with the indicated offset and
|
||||
/// length
|
||||
///
|
||||
/// \param[in] offset the position of the first element in the constructed
|
||||
/// slice
|
||||
/// \param[in] length the length of the slice. If there are not enough
|
||||
/// elements in the array, the length will be adjusted accordingly
|
||||
///
|
||||
/// \return a new object wrapped in std::shared_ptr<Array>
|
||||
std::shared_ptr<Array> Slice(int64_t offset, int64_t length) const;
|
||||
|
||||
/// Slice from offset until end of the array
|
||||
std::shared_ptr<Array> Slice(int64_t offset) const;
|
||||
|
||||
/// Input-checking variant of Array::Slice
|
||||
Result<std::shared_ptr<Array>> SliceSafe(int64_t offset, int64_t length) const;
|
||||
/// Input-checking variant of Array::Slice
|
||||
Result<std::shared_ptr<Array>> SliceSafe(int64_t offset) const;
|
||||
|
||||
const std::shared_ptr<ArrayData>& data() const { return data_; }
|
||||
|
||||
int num_fields() const { return static_cast<int>(data_->child_data.size()); }
|
||||
|
||||
/// \return PrettyPrint representation of array suitable for debugging
|
||||
std::string ToString() const;
|
||||
|
||||
/// \brief Perform cheap validation checks to determine obvious inconsistencies
|
||||
/// within the array's internal data.
|
||||
///
|
||||
/// This is O(k) where k is the number of descendents.
|
||||
///
|
||||
/// \return Status
|
||||
Status Validate() const;
|
||||
|
||||
/// \brief Perform extensive validation checks to determine inconsistencies
|
||||
/// within the array's internal data.
|
||||
///
|
||||
/// This is potentially O(k*n) where k is the number of descendents and n
|
||||
/// is the array length.
|
||||
///
|
||||
/// \return Status
|
||||
Status ValidateFull() const;
|
||||
|
||||
protected:
|
||||
Array() = default;
|
||||
ARROW_DEFAULT_MOVE_AND_ASSIGN(Array);
|
||||
|
||||
std::shared_ptr<ArrayData> data_;
|
||||
const uint8_t* null_bitmap_data_ = NULLPTR;
|
||||
|
||||
/// Protected method for constructors
|
||||
void SetData(const std::shared_ptr<ArrayData>& data) {
|
||||
if (data->buffers.size() > 0) {
|
||||
null_bitmap_data_ = data->GetValuesSafe<uint8_t>(0, /*offset=*/0);
|
||||
} else {
|
||||
null_bitmap_data_ = NULLPTR;
|
||||
}
|
||||
data_ = data;
|
||||
}
|
||||
|
||||
private:
|
||||
ARROW_DISALLOW_COPY_AND_ASSIGN(Array);
|
||||
|
||||
ARROW_FRIEND_EXPORT friend void PrintTo(const Array& x, std::ostream* os);
|
||||
};
|
||||
|
||||
static inline std::ostream& operator<<(std::ostream& os, const Array& x) {
|
||||
os << x.ToString();
|
||||
return os;
|
||||
}
|
||||
|
||||
/// Base class for non-nested arrays
|
||||
class ARROW_EXPORT FlatArray : public Array {
|
||||
protected:
|
||||
using Array::Array;
|
||||
};
|
||||
|
||||
/// Base class for arrays of fixed-size logical types
|
||||
class ARROW_EXPORT PrimitiveArray : public FlatArray {
|
||||
public:
|
||||
PrimitiveArray(const std::shared_ptr<DataType>& type, int64_t length,
|
||||
const std::shared_ptr<Buffer>& data,
|
||||
const std::shared_ptr<Buffer>& null_bitmap = NULLPTR,
|
||||
int64_t null_count = kUnknownNullCount, int64_t offset = 0);
|
||||
|
||||
/// Does not account for any slice offset
|
||||
std::shared_ptr<Buffer> values() const { return data_->buffers[1]; }
|
||||
|
||||
protected:
|
||||
PrimitiveArray() : raw_values_(NULLPTR) {}
|
||||
|
||||
void SetData(const std::shared_ptr<ArrayData>& data) {
|
||||
this->Array::SetData(data);
|
||||
raw_values_ = data->GetValuesSafe<uint8_t>(1, /*offset=*/0);
|
||||
}
|
||||
|
||||
explicit PrimitiveArray(const std::shared_ptr<ArrayData>& data) { SetData(data); }
|
||||
|
||||
const uint8_t* raw_values_;
|
||||
};
|
||||
|
||||
/// Degenerate null type Array
|
||||
class ARROW_EXPORT NullArray : public FlatArray {
|
||||
public:
|
||||
using TypeClass = NullType;
|
||||
|
||||
explicit NullArray(const std::shared_ptr<ArrayData>& data) { SetData(data); }
|
||||
explicit NullArray(int64_t length);
|
||||
|
||||
private:
|
||||
void SetData(const std::shared_ptr<ArrayData>& data) {
|
||||
null_bitmap_data_ = NULLPTR;
|
||||
data->null_count = data->length;
|
||||
data_ = data;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,269 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// Array accessor classes for Binary, LargeBinart, String, LargeString,
|
||||
// FixedSizeBinary
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <string_view>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/array/array_base.h"
|
||||
#include "arrow/array/data.h"
|
||||
#include "arrow/buffer.h"
|
||||
#include "arrow/stl_iterator.h"
|
||||
#include "arrow/type.h"
|
||||
#include "arrow/util/checked_cast.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
/// \addtogroup binary-arrays
|
||||
///
|
||||
/// @{
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// Binary and String
|
||||
|
||||
/// Base class for variable-sized binary arrays, regardless of offset size
|
||||
/// and logical interpretation.
|
||||
template <typename TYPE>
|
||||
class BaseBinaryArray : public FlatArray {
|
||||
public:
|
||||
using TypeClass = TYPE;
|
||||
using offset_type = typename TypeClass::offset_type;
|
||||
using IteratorType = stl::ArrayIterator<BaseBinaryArray<TYPE>>;
|
||||
|
||||
/// Return the pointer to the given elements bytes
|
||||
// XXX should GetValue(int64_t i) return a string_view?
|
||||
const uint8_t* GetValue(int64_t i, offset_type* out_length) const {
|
||||
// Account for base offset
|
||||
i += data_->offset;
|
||||
const offset_type pos = raw_value_offsets_[i];
|
||||
*out_length = raw_value_offsets_[i + 1] - pos;
|
||||
return raw_data_ + pos;
|
||||
}
|
||||
|
||||
/// \brief Get binary value as a string_view
|
||||
///
|
||||
/// \param i the value index
|
||||
/// \return the view over the selected value
|
||||
std::string_view GetView(int64_t i) const {
|
||||
// Account for base offset
|
||||
i += data_->offset;
|
||||
const offset_type pos = raw_value_offsets_[i];
|
||||
return std::string_view(reinterpret_cast<const char*>(raw_data_ + pos),
|
||||
raw_value_offsets_[i + 1] - pos);
|
||||
}
|
||||
|
||||
std::optional<std::string_view> operator[](int64_t i) const {
|
||||
return *IteratorType(*this, i);
|
||||
}
|
||||
|
||||
/// \brief Get binary value as a string_view
|
||||
/// Provided for consistency with other arrays.
|
||||
///
|
||||
/// \param i the value index
|
||||
/// \return the view over the selected value
|
||||
std::string_view Value(int64_t i) const { return GetView(i); }
|
||||
|
||||
/// \brief Get binary value as a std::string
|
||||
///
|
||||
/// \param i the value index
|
||||
/// \return the value copied into a std::string
|
||||
std::string GetString(int64_t i) const { return std::string(GetView(i)); }
|
||||
|
||||
/// Note that this buffer does not account for any slice offset
|
||||
std::shared_ptr<Buffer> value_offsets() const { return data_->buffers[1]; }
|
||||
|
||||
/// Note that this buffer does not account for any slice offset
|
||||
std::shared_ptr<Buffer> value_data() const { return data_->buffers[2]; }
|
||||
|
||||
const offset_type* raw_value_offsets() const {
|
||||
return raw_value_offsets_ + data_->offset;
|
||||
}
|
||||
|
||||
const uint8_t* raw_data() const { return raw_data_; }
|
||||
|
||||
/// \brief Return the data buffer absolute offset of the data for the value
|
||||
/// at the passed index.
|
||||
///
|
||||
/// Does not perform boundschecking
|
||||
offset_type value_offset(int64_t i) const {
|
||||
return raw_value_offsets_[i + data_->offset];
|
||||
}
|
||||
|
||||
/// \brief Return the length of the data for the value at the passed index.
|
||||
///
|
||||
/// Does not perform boundschecking
|
||||
offset_type value_length(int64_t i) const {
|
||||
i += data_->offset;
|
||||
return raw_value_offsets_[i + 1] - raw_value_offsets_[i];
|
||||
}
|
||||
|
||||
/// \brief Return the total length of the memory in the data buffer
|
||||
/// referenced by this array. If the array has been sliced then this may be
|
||||
/// less than the size of the data buffer (data_->buffers[2]).
|
||||
offset_type total_values_length() const {
|
||||
if (data_->length > 0) {
|
||||
return raw_value_offsets_[data_->length + data_->offset] -
|
||||
raw_value_offsets_[data_->offset];
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
IteratorType begin() const { return IteratorType(*this); }
|
||||
|
||||
IteratorType end() const { return IteratorType(*this, length()); }
|
||||
|
||||
protected:
|
||||
// For subclasses
|
||||
BaseBinaryArray() = default;
|
||||
|
||||
// Protected method for constructors
|
||||
void SetData(const std::shared_ptr<ArrayData>& data) {
|
||||
this->Array::SetData(data);
|
||||
raw_value_offsets_ = data->GetValuesSafe<offset_type>(1, /*offset=*/0);
|
||||
raw_data_ = data->GetValuesSafe<uint8_t>(2, /*offset=*/0);
|
||||
}
|
||||
|
||||
const offset_type* raw_value_offsets_ = NULLPTR;
|
||||
const uint8_t* raw_data_ = NULLPTR;
|
||||
};
|
||||
|
||||
/// Concrete Array class for variable-size binary data
|
||||
class ARROW_EXPORT BinaryArray : public BaseBinaryArray<BinaryType> {
|
||||
public:
|
||||
explicit BinaryArray(const std::shared_ptr<ArrayData>& data);
|
||||
|
||||
BinaryArray(int64_t length, const std::shared_ptr<Buffer>& value_offsets,
|
||||
const std::shared_ptr<Buffer>& data,
|
||||
const std::shared_ptr<Buffer>& null_bitmap = NULLPTR,
|
||||
int64_t null_count = kUnknownNullCount, int64_t offset = 0);
|
||||
|
||||
protected:
|
||||
// For subclasses such as StringArray
|
||||
BinaryArray() : BaseBinaryArray() {}
|
||||
};
|
||||
|
||||
/// Concrete Array class for variable-size string (utf-8) data
|
||||
class ARROW_EXPORT StringArray : public BinaryArray {
|
||||
public:
|
||||
using TypeClass = StringType;
|
||||
|
||||
explicit StringArray(const std::shared_ptr<ArrayData>& data);
|
||||
|
||||
StringArray(int64_t length, const std::shared_ptr<Buffer>& value_offsets,
|
||||
const std::shared_ptr<Buffer>& data,
|
||||
const std::shared_ptr<Buffer>& null_bitmap = NULLPTR,
|
||||
int64_t null_count = kUnknownNullCount, int64_t offset = 0);
|
||||
|
||||
/// \brief Validate that this array contains only valid UTF8 entries
|
||||
///
|
||||
/// This check is also implied by ValidateFull()
|
||||
Status ValidateUTF8() const;
|
||||
};
|
||||
|
||||
/// Concrete Array class for large variable-size binary data
|
||||
class ARROW_EXPORT LargeBinaryArray : public BaseBinaryArray<LargeBinaryType> {
|
||||
public:
|
||||
explicit LargeBinaryArray(const std::shared_ptr<ArrayData>& data);
|
||||
|
||||
LargeBinaryArray(int64_t length, const std::shared_ptr<Buffer>& value_offsets,
|
||||
const std::shared_ptr<Buffer>& data,
|
||||
const std::shared_ptr<Buffer>& null_bitmap = NULLPTR,
|
||||
int64_t null_count = kUnknownNullCount, int64_t offset = 0);
|
||||
|
||||
protected:
|
||||
// For subclasses such as LargeStringArray
|
||||
LargeBinaryArray() : BaseBinaryArray() {}
|
||||
};
|
||||
|
||||
/// Concrete Array class for large variable-size string (utf-8) data
|
||||
class ARROW_EXPORT LargeStringArray : public LargeBinaryArray {
|
||||
public:
|
||||
using TypeClass = LargeStringType;
|
||||
|
||||
explicit LargeStringArray(const std::shared_ptr<ArrayData>& data);
|
||||
|
||||
LargeStringArray(int64_t length, const std::shared_ptr<Buffer>& value_offsets,
|
||||
const std::shared_ptr<Buffer>& data,
|
||||
const std::shared_ptr<Buffer>& null_bitmap = NULLPTR,
|
||||
int64_t null_count = kUnknownNullCount, int64_t offset = 0);
|
||||
|
||||
/// \brief Validate that this array contains only valid UTF8 entries
|
||||
///
|
||||
/// This check is also implied by ValidateFull()
|
||||
Status ValidateUTF8() const;
|
||||
};
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// Fixed width binary
|
||||
|
||||
/// Concrete Array class for fixed-size binary data
|
||||
class ARROW_EXPORT FixedSizeBinaryArray : public PrimitiveArray {
|
||||
public:
|
||||
using TypeClass = FixedSizeBinaryType;
|
||||
using IteratorType = stl::ArrayIterator<FixedSizeBinaryArray>;
|
||||
|
||||
explicit FixedSizeBinaryArray(const std::shared_ptr<ArrayData>& data);
|
||||
|
||||
FixedSizeBinaryArray(const std::shared_ptr<DataType>& type, int64_t length,
|
||||
const std::shared_ptr<Buffer>& data,
|
||||
const std::shared_ptr<Buffer>& null_bitmap = NULLPTR,
|
||||
int64_t null_count = kUnknownNullCount, int64_t offset = 0);
|
||||
|
||||
const uint8_t* GetValue(int64_t i) const;
|
||||
const uint8_t* Value(int64_t i) const { return GetValue(i); }
|
||||
|
||||
std::string_view GetView(int64_t i) const {
|
||||
return std::string_view(reinterpret_cast<const char*>(GetValue(i)), byte_width());
|
||||
}
|
||||
|
||||
std::optional<std::string_view> operator[](int64_t i) const {
|
||||
return *IteratorType(*this, i);
|
||||
}
|
||||
|
||||
std::string GetString(int64_t i) const { return std::string(GetView(i)); }
|
||||
|
||||
int32_t byte_width() const { return byte_width_; }
|
||||
|
||||
const uint8_t* raw_values() const { return raw_values_ + data_->offset * byte_width_; }
|
||||
|
||||
IteratorType begin() const { return IteratorType(*this); }
|
||||
|
||||
IteratorType end() const { return IteratorType(*this, length()); }
|
||||
|
||||
protected:
|
||||
void SetData(const std::shared_ptr<ArrayData>& data) {
|
||||
this->PrimitiveArray::SetData(data);
|
||||
byte_width_ =
|
||||
internal::checked_cast<const FixedSizeBinaryType&>(*type()).byte_width();
|
||||
}
|
||||
|
||||
int32_t byte_width_;
|
||||
};
|
||||
|
||||
/// @}
|
||||
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,72 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
|
||||
#include "arrow/array/array_binary.h"
|
||||
#include "arrow/array/data.h"
|
||||
#include "arrow/type.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
/// \addtogroup numeric-arrays
|
||||
///
|
||||
/// @{
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// Decimal128Array
|
||||
|
||||
/// Concrete Array class for 128-bit decimal data
|
||||
class ARROW_EXPORT Decimal128Array : public FixedSizeBinaryArray {
|
||||
public:
|
||||
using TypeClass = Decimal128Type;
|
||||
|
||||
using FixedSizeBinaryArray::FixedSizeBinaryArray;
|
||||
|
||||
/// \brief Construct Decimal128Array from ArrayData instance
|
||||
explicit Decimal128Array(const std::shared_ptr<ArrayData>& data);
|
||||
|
||||
std::string FormatValue(int64_t i) const;
|
||||
};
|
||||
|
||||
// Backward compatibility
|
||||
using DecimalArray = Decimal128Array;
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// Decimal256Array
|
||||
|
||||
/// Concrete Array class for 256-bit decimal data
|
||||
class ARROW_EXPORT Decimal256Array : public FixedSizeBinaryArray {
|
||||
public:
|
||||
using TypeClass = Decimal256Type;
|
||||
|
||||
using FixedSizeBinaryArray::FixedSizeBinaryArray;
|
||||
|
||||
/// \brief Construct Decimal256Array from ArrayData instance
|
||||
explicit Decimal256Array(const std::shared_ptr<ArrayData>& data);
|
||||
|
||||
std::string FormatValue(int64_t i) const;
|
||||
};
|
||||
|
||||
/// @}
|
||||
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,180 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
|
||||
#include "arrow/array/array_base.h"
|
||||
#include "arrow/array/data.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/type.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// DictionaryArray
|
||||
|
||||
/// \brief Array type for dictionary-encoded data with a
|
||||
/// data-dependent dictionary
|
||||
///
|
||||
/// A dictionary array contains an array of non-negative integers (the
|
||||
/// "dictionary indices") along with a data type containing a "dictionary"
|
||||
/// corresponding to the distinct values represented in the data.
|
||||
///
|
||||
/// For example, the array
|
||||
///
|
||||
/// ["foo", "bar", "foo", "bar", "foo", "bar"]
|
||||
///
|
||||
/// with dictionary ["bar", "foo"], would have dictionary array representation
|
||||
///
|
||||
/// indices: [1, 0, 1, 0, 1, 0]
|
||||
/// dictionary: ["bar", "foo"]
|
||||
///
|
||||
/// The indices in principle may be any integer type.
|
||||
class ARROW_EXPORT DictionaryArray : public Array {
|
||||
public:
|
||||
using TypeClass = DictionaryType;
|
||||
|
||||
explicit DictionaryArray(const std::shared_ptr<ArrayData>& data);
|
||||
|
||||
DictionaryArray(const std::shared_ptr<DataType>& type,
|
||||
const std::shared_ptr<Array>& indices,
|
||||
const std::shared_ptr<Array>& dictionary);
|
||||
|
||||
/// \brief Construct DictionaryArray from dictionary and indices
|
||||
/// array and validate
|
||||
///
|
||||
/// This function does the validation of the indices and input type. It checks if
|
||||
/// all indices are non-negative and smaller than the size of the dictionary.
|
||||
///
|
||||
/// \param[in] type a dictionary type
|
||||
/// \param[in] dictionary the dictionary with same value type as the
|
||||
/// type object
|
||||
/// \param[in] indices an array of non-negative integers smaller than the
|
||||
/// size of the dictionary
|
||||
static Result<std::shared_ptr<Array>> FromArrays(
|
||||
const std::shared_ptr<DataType>& type, const std::shared_ptr<Array>& indices,
|
||||
const std::shared_ptr<Array>& dictionary);
|
||||
|
||||
static Result<std::shared_ptr<Array>> FromArrays(
|
||||
const std::shared_ptr<Array>& indices, const std::shared_ptr<Array>& dictionary) {
|
||||
return FromArrays(::arrow::dictionary(indices->type(), dictionary->type()), indices,
|
||||
dictionary);
|
||||
}
|
||||
|
||||
/// \brief Transpose this DictionaryArray
|
||||
///
|
||||
/// This method constructs a new dictionary array with the given dictionary
|
||||
/// type, transposing indices using the transpose map. The type and the
|
||||
/// transpose map are typically computed using DictionaryUnifier.
|
||||
///
|
||||
/// \param[in] type the new type object
|
||||
/// \param[in] dictionary the new dictionary
|
||||
/// \param[in] transpose_map transposition array of this array's indices
|
||||
/// into the target array's indices
|
||||
/// \param[in] pool a pool to allocate the array data from
|
||||
Result<std::shared_ptr<Array>> Transpose(
|
||||
const std::shared_ptr<DataType>& type, const std::shared_ptr<Array>& dictionary,
|
||||
const int32_t* transpose_map, MemoryPool* pool = default_memory_pool()) const;
|
||||
|
||||
/// \brief Determine whether dictionary arrays may be compared without unification
|
||||
bool CanCompareIndices(const DictionaryArray& other) const;
|
||||
|
||||
/// \brief Return the dictionary for this array, which is stored as
|
||||
/// a member of the ArrayData internal structure
|
||||
std::shared_ptr<Array> dictionary() const;
|
||||
std::shared_ptr<Array> indices() const;
|
||||
|
||||
/// \brief Return the ith value of indices, cast to int64_t. Not recommended
|
||||
/// for use in performance-sensitive code. Does not validate whether the
|
||||
/// value is null or out-of-bounds.
|
||||
int64_t GetValueIndex(int64_t i) const;
|
||||
|
||||
const DictionaryType* dict_type() const { return dict_type_; }
|
||||
|
||||
private:
|
||||
void SetData(const std::shared_ptr<ArrayData>& data);
|
||||
const DictionaryType* dict_type_;
|
||||
std::shared_ptr<Array> indices_;
|
||||
|
||||
// Lazily initialized when invoking dictionary()
|
||||
mutable std::shared_ptr<Array> dictionary_;
|
||||
};
|
||||
|
||||
/// \brief Helper class for incremental dictionary unification
|
||||
class ARROW_EXPORT DictionaryUnifier {
|
||||
public:
|
||||
virtual ~DictionaryUnifier() = default;
|
||||
|
||||
/// \brief Construct a DictionaryUnifier
|
||||
/// \param[in] value_type the data type of the dictionaries
|
||||
/// \param[in] pool MemoryPool to use for memory allocations
|
||||
static Result<std::unique_ptr<DictionaryUnifier>> Make(
|
||||
std::shared_ptr<DataType> value_type, MemoryPool* pool = default_memory_pool());
|
||||
|
||||
/// \brief Unify dictionaries accross array chunks
|
||||
///
|
||||
/// The dictionaries in the array chunks will be unified, their indices
|
||||
/// accordingly transposed.
|
||||
///
|
||||
/// Only dictionaries with a primitive value type are currently supported.
|
||||
/// However, dictionaries nested inside a more complex type are correctly unified.
|
||||
static Result<std::shared_ptr<ChunkedArray>> UnifyChunkedArray(
|
||||
const std::shared_ptr<ChunkedArray>& array,
|
||||
MemoryPool* pool = default_memory_pool());
|
||||
|
||||
/// \brief Unify dictionaries accross the chunks of each table column
|
||||
///
|
||||
/// The dictionaries in each table column will be unified, their indices
|
||||
/// accordingly transposed.
|
||||
///
|
||||
/// Only dictionaries with a primitive value type are currently supported.
|
||||
/// However, dictionaries nested inside a more complex type are correctly unified.
|
||||
static Result<std::shared_ptr<Table>> UnifyTable(
|
||||
const Table& table, MemoryPool* pool = default_memory_pool());
|
||||
|
||||
/// \brief Append dictionary to the internal memo
|
||||
virtual Status Unify(const Array& dictionary) = 0;
|
||||
|
||||
/// \brief Append dictionary and compute transpose indices
|
||||
/// \param[in] dictionary the dictionary values to unify
|
||||
/// \param[out] out_transpose a Buffer containing computed transpose indices
|
||||
/// as int32_t values equal in length to the passed dictionary. The value in
|
||||
/// each slot corresponds to the new index value for each original index
|
||||
/// for a DictionaryArray with the old dictionary
|
||||
virtual Status Unify(const Array& dictionary,
|
||||
std::shared_ptr<Buffer>* out_transpose) = 0;
|
||||
|
||||
/// \brief Return a result DictionaryType with the smallest possible index
|
||||
/// type to accommodate the unified dictionary. The unifier cannot be used
|
||||
/// after this is called
|
||||
virtual Status GetResult(std::shared_ptr<DataType>* out_type,
|
||||
std::shared_ptr<Array>* out_dict) = 0;
|
||||
|
||||
/// \brief Return a unified dictionary with the given index type. If
|
||||
/// the index type is not large enough then an invalid status will be returned.
|
||||
/// The unifier cannot be used after this is called
|
||||
virtual Status GetResultWithIndexType(const std::shared_ptr<DataType>& index_type,
|
||||
std::shared_ptr<Array>* out_dict) = 0;
|
||||
};
|
||||
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,584 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// Array accessor classes for List, LargeList, FixedSizeList, Map, Struct, and
|
||||
// Union
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/array/array_base.h"
|
||||
#include "arrow/array/data.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/type.h"
|
||||
#include "arrow/type_fwd.h"
|
||||
#include "arrow/util/checked_cast.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
/// \addtogroup nested-arrays
|
||||
///
|
||||
/// @{
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// ListArray
|
||||
|
||||
template <typename TYPE>
|
||||
class BaseListArray;
|
||||
|
||||
namespace internal {
|
||||
|
||||
// Private helper for ListArray::SetData.
|
||||
// Unfortunately, trying to define BaseListArray::SetData outside of this header
|
||||
// doesn't play well with MSVC.
|
||||
template <typename TYPE>
|
||||
void SetListData(BaseListArray<TYPE>* self, const std::shared_ptr<ArrayData>& data,
|
||||
Type::type expected_type_id = TYPE::type_id);
|
||||
|
||||
} // namespace internal
|
||||
|
||||
/// Base class for variable-sized list arrays, regardless of offset size.
|
||||
template <typename TYPE>
|
||||
class BaseListArray : public Array {
|
||||
public:
|
||||
using TypeClass = TYPE;
|
||||
using offset_type = typename TypeClass::offset_type;
|
||||
|
||||
const TypeClass* list_type() const { return list_type_; }
|
||||
|
||||
/// \brief Return array object containing the list's values
|
||||
///
|
||||
/// Note that this buffer does not account for any slice offset or length.
|
||||
std::shared_ptr<Array> values() const { return values_; }
|
||||
|
||||
/// Note that this buffer does not account for any slice offset or length.
|
||||
std::shared_ptr<Buffer> value_offsets() const { return data_->buffers[1]; }
|
||||
|
||||
std::shared_ptr<DataType> value_type() const { return list_type_->value_type(); }
|
||||
|
||||
/// Return pointer to raw value offsets accounting for any slice offset
|
||||
const offset_type* raw_value_offsets() const {
|
||||
return raw_value_offsets_ + data_->offset;
|
||||
}
|
||||
|
||||
// The following functions will not perform boundschecking
|
||||
offset_type value_offset(int64_t i) const {
|
||||
return raw_value_offsets_[i + data_->offset];
|
||||
}
|
||||
offset_type value_length(int64_t i) const {
|
||||
i += data_->offset;
|
||||
return raw_value_offsets_[i + 1] - raw_value_offsets_[i];
|
||||
}
|
||||
std::shared_ptr<Array> value_slice(int64_t i) const {
|
||||
return values_->Slice(value_offset(i), value_length(i));
|
||||
}
|
||||
|
||||
protected:
|
||||
friend void internal::SetListData<TYPE>(BaseListArray<TYPE>* self,
|
||||
const std::shared_ptr<ArrayData>& data,
|
||||
Type::type expected_type_id);
|
||||
|
||||
const TypeClass* list_type_ = NULLPTR;
|
||||
std::shared_ptr<Array> values_;
|
||||
const offset_type* raw_value_offsets_ = NULLPTR;
|
||||
};
|
||||
|
||||
/// Concrete Array class for list data
|
||||
class ARROW_EXPORT ListArray : public BaseListArray<ListType> {
|
||||
public:
|
||||
explicit ListArray(std::shared_ptr<ArrayData> data);
|
||||
|
||||
ListArray(std::shared_ptr<DataType> type, int64_t length,
|
||||
std::shared_ptr<Buffer> value_offsets, std::shared_ptr<Array> values,
|
||||
std::shared_ptr<Buffer> null_bitmap = NULLPTR,
|
||||
int64_t null_count = kUnknownNullCount, int64_t offset = 0);
|
||||
|
||||
/// \brief Construct ListArray from array of offsets and child value array
|
||||
///
|
||||
/// This function does the bare minimum of validation of the offsets and
|
||||
/// input types, and will allocate a new offsets array if necessary (i.e. if
|
||||
/// the offsets contain any nulls). If the offsets do not have nulls, they
|
||||
/// are assumed to be well-formed
|
||||
///
|
||||
/// Offsets of an Array's null bitmap can be present or an explicit
|
||||
/// null_bitmap, but not both.
|
||||
///
|
||||
/// \param[in] offsets Array containing n + 1 offsets encoding length and
|
||||
/// size. Must be of int32 type
|
||||
/// \param[in] values Array containing list values
|
||||
/// \param[in] pool MemoryPool in case new offsets array needs to be
|
||||
/// allocated because of null values
|
||||
/// \param[in] null_bitmap Optional validity bitmap
|
||||
/// \param[in] null_count Optional null count in null_bitmap
|
||||
static Result<std::shared_ptr<ListArray>> FromArrays(
|
||||
const Array& offsets, const Array& values, MemoryPool* pool = default_memory_pool(),
|
||||
std::shared_ptr<Buffer> null_bitmap = NULLPTR,
|
||||
int64_t null_count = kUnknownNullCount);
|
||||
|
||||
static Result<std::shared_ptr<ListArray>> FromArrays(
|
||||
std::shared_ptr<DataType> type, const Array& offsets, const Array& values,
|
||||
MemoryPool* pool = default_memory_pool(),
|
||||
std::shared_ptr<Buffer> null_bitmap = NULLPTR,
|
||||
int64_t null_count = kUnknownNullCount);
|
||||
|
||||
/// \brief Return an Array that is a concatenation of the lists in this array.
|
||||
///
|
||||
/// Note that it's different from `values()` in that it takes into
|
||||
/// consideration of this array's offsets as well as null elements backed
|
||||
/// by non-empty lists (they are skipped, thus copying may be needed).
|
||||
Result<std::shared_ptr<Array>> Flatten(
|
||||
MemoryPool* memory_pool = default_memory_pool()) const;
|
||||
|
||||
/// \brief Return list offsets as an Int32Array
|
||||
///
|
||||
/// The returned array will not have a validity bitmap, so you cannot expect
|
||||
/// to pass it to ListArray::FromArrays() and get back the same list array
|
||||
/// if the original one has nulls.
|
||||
std::shared_ptr<Array> offsets() const;
|
||||
|
||||
protected:
|
||||
// This constructor defers SetData to a derived array class
|
||||
ListArray() = default;
|
||||
|
||||
void SetData(const std::shared_ptr<ArrayData>& data);
|
||||
};
|
||||
|
||||
/// Concrete Array class for large list data (with 64-bit offsets)
|
||||
class ARROW_EXPORT LargeListArray : public BaseListArray<LargeListType> {
|
||||
public:
|
||||
explicit LargeListArray(const std::shared_ptr<ArrayData>& data);
|
||||
|
||||
LargeListArray(const std::shared_ptr<DataType>& type, int64_t length,
|
||||
const std::shared_ptr<Buffer>& value_offsets,
|
||||
const std::shared_ptr<Array>& values,
|
||||
const std::shared_ptr<Buffer>& null_bitmap = NULLPTR,
|
||||
int64_t null_count = kUnknownNullCount, int64_t offset = 0);
|
||||
|
||||
/// \brief Construct LargeListArray from array of offsets and child value array
|
||||
///
|
||||
/// This function does the bare minimum of validation of the offsets and
|
||||
/// input types, and will allocate a new offsets array if necessary (i.e. if
|
||||
/// the offsets contain any nulls). If the offsets do not have nulls, they
|
||||
/// are assumed to be well-formed
|
||||
///
|
||||
/// \param[in] offsets Array containing n + 1 offsets encoding length and
|
||||
/// size. Must be of int64 type
|
||||
/// \param[in] values Array containing list values
|
||||
/// \param[in] pool MemoryPool in case new offsets array needs to be
|
||||
/// allocated because of null values
|
||||
/// \param[in] null_bitmap Optional validity bitmap
|
||||
/// \param[in] null_count Optional null count in null_bitmap
|
||||
static Result<std::shared_ptr<LargeListArray>> FromArrays(
|
||||
const Array& offsets, const Array& values, MemoryPool* pool = default_memory_pool(),
|
||||
std::shared_ptr<Buffer> null_bitmap = NULLPTR,
|
||||
int64_t null_count = kUnknownNullCount);
|
||||
|
||||
static Result<std::shared_ptr<LargeListArray>> FromArrays(
|
||||
std::shared_ptr<DataType> type, const Array& offsets, const Array& values,
|
||||
MemoryPool* pool = default_memory_pool(),
|
||||
std::shared_ptr<Buffer> null_bitmap = NULLPTR,
|
||||
int64_t null_count = kUnknownNullCount);
|
||||
|
||||
/// \brief Return an Array that is a concatenation of the lists in this array.
|
||||
///
|
||||
/// Note that it's different from `values()` in that it takes into
|
||||
/// consideration of this array's offsets as well as null elements backed
|
||||
/// by non-empty lists (they are skipped, thus copying may be needed).
|
||||
Result<std::shared_ptr<Array>> Flatten(
|
||||
MemoryPool* memory_pool = default_memory_pool()) const;
|
||||
|
||||
/// \brief Return list offsets as an Int64Array
|
||||
std::shared_ptr<Array> offsets() const;
|
||||
|
||||
protected:
|
||||
void SetData(const std::shared_ptr<ArrayData>& data);
|
||||
};
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// MapArray
|
||||
|
||||
/// Concrete Array class for map data
|
||||
///
|
||||
/// NB: "value" in this context refers to a pair of a key and the corresponding item
|
||||
class ARROW_EXPORT MapArray : public ListArray {
|
||||
public:
|
||||
using TypeClass = MapType;
|
||||
|
||||
explicit MapArray(const std::shared_ptr<ArrayData>& data);
|
||||
|
||||
MapArray(const std::shared_ptr<DataType>& type, int64_t length,
|
||||
const std::shared_ptr<Buffer>& value_offsets,
|
||||
const std::shared_ptr<Array>& keys, const std::shared_ptr<Array>& items,
|
||||
const std::shared_ptr<Buffer>& null_bitmap = NULLPTR,
|
||||
int64_t null_count = kUnknownNullCount, int64_t offset = 0);
|
||||
|
||||
MapArray(const std::shared_ptr<DataType>& type, int64_t length,
|
||||
const std::shared_ptr<Buffer>& value_offsets,
|
||||
const std::shared_ptr<Array>& values,
|
||||
const std::shared_ptr<Buffer>& null_bitmap = NULLPTR,
|
||||
int64_t null_count = kUnknownNullCount, int64_t offset = 0);
|
||||
|
||||
/// \brief Construct MapArray from array of offsets and child key, item arrays
|
||||
///
|
||||
/// This function does the bare minimum of validation of the offsets and
|
||||
/// input types, and will allocate a new offsets array if necessary (i.e. if
|
||||
/// the offsets contain any nulls). If the offsets do not have nulls, they
|
||||
/// are assumed to be well-formed
|
||||
///
|
||||
/// \param[in] offsets Array containing n + 1 offsets encoding length and
|
||||
/// size. Must be of int32 type
|
||||
/// \param[in] keys Array containing key values
|
||||
/// \param[in] items Array containing item values
|
||||
/// \param[in] pool MemoryPool in case new offsets array needs to be
|
||||
/// allocated because of null values
|
||||
static Result<std::shared_ptr<Array>> FromArrays(
|
||||
const std::shared_ptr<Array>& offsets, const std::shared_ptr<Array>& keys,
|
||||
const std::shared_ptr<Array>& items, MemoryPool* pool = default_memory_pool());
|
||||
|
||||
static Result<std::shared_ptr<Array>> FromArrays(
|
||||
std::shared_ptr<DataType> type, const std::shared_ptr<Array>& offsets,
|
||||
const std::shared_ptr<Array>& keys, const std::shared_ptr<Array>& items,
|
||||
MemoryPool* pool = default_memory_pool());
|
||||
|
||||
const MapType* map_type() const { return map_type_; }
|
||||
|
||||
/// \brief Return array object containing all map keys
|
||||
std::shared_ptr<Array> keys() const { return keys_; }
|
||||
|
||||
/// \brief Return array object containing all mapped items
|
||||
std::shared_ptr<Array> items() const { return items_; }
|
||||
|
||||
/// Validate child data before constructing the actual MapArray.
|
||||
static Status ValidateChildData(
|
||||
const std::vector<std::shared_ptr<ArrayData>>& child_data);
|
||||
|
||||
protected:
|
||||
void SetData(const std::shared_ptr<ArrayData>& data);
|
||||
|
||||
static Result<std::shared_ptr<Array>> FromArraysInternal(
|
||||
std::shared_ptr<DataType> type, const std::shared_ptr<Array>& offsets,
|
||||
const std::shared_ptr<Array>& keys, const std::shared_ptr<Array>& items,
|
||||
MemoryPool* pool);
|
||||
|
||||
private:
|
||||
const MapType* map_type_;
|
||||
std::shared_ptr<Array> keys_, items_;
|
||||
};
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// FixedSizeListArray
|
||||
|
||||
/// Concrete Array class for fixed size list data
|
||||
class ARROW_EXPORT FixedSizeListArray : public Array {
|
||||
public:
|
||||
using TypeClass = FixedSizeListType;
|
||||
using offset_type = TypeClass::offset_type;
|
||||
|
||||
explicit FixedSizeListArray(const std::shared_ptr<ArrayData>& data);
|
||||
|
||||
FixedSizeListArray(const std::shared_ptr<DataType>& type, int64_t length,
|
||||
const std::shared_ptr<Array>& values,
|
||||
const std::shared_ptr<Buffer>& null_bitmap = NULLPTR,
|
||||
int64_t null_count = kUnknownNullCount, int64_t offset = 0);
|
||||
|
||||
const FixedSizeListType* list_type() const;
|
||||
|
||||
/// \brief Return array object containing the list's values
|
||||
std::shared_ptr<Array> values() const;
|
||||
|
||||
std::shared_ptr<DataType> value_type() const;
|
||||
|
||||
// The following functions will not perform boundschecking
|
||||
int64_t value_offset(int64_t i) const {
|
||||
i += data_->offset;
|
||||
return list_size_ * i;
|
||||
}
|
||||
int32_t value_length(int64_t i = 0) const {
|
||||
ARROW_UNUSED(i);
|
||||
return list_size_;
|
||||
}
|
||||
std::shared_ptr<Array> value_slice(int64_t i) const {
|
||||
return values_->Slice(value_offset(i), value_length(i));
|
||||
}
|
||||
|
||||
/// \brief Return an Array that is a concatenation of the lists in this array.
|
||||
///
|
||||
/// Note that it's different from `values()` in that it takes into
|
||||
/// consideration null elements (they are skipped, thus copying may be needed).
|
||||
Result<std::shared_ptr<Array>> Flatten(
|
||||
MemoryPool* memory_pool = default_memory_pool()) const;
|
||||
|
||||
/// \brief Construct FixedSizeListArray from child value array and value_length
|
||||
///
|
||||
/// \param[in] values Array containing list values
|
||||
/// \param[in] list_size The fixed length of each list
|
||||
/// \return Will have length equal to values.length() / list_size
|
||||
static Result<std::shared_ptr<Array>> FromArrays(const std::shared_ptr<Array>& values,
|
||||
int32_t list_size);
|
||||
|
||||
/// \brief Construct FixedSizeListArray from child value array and type
|
||||
///
|
||||
/// \param[in] values Array containing list values
|
||||
/// \param[in] type The fixed sized list type
|
||||
/// \return Will have length equal to values.length() / type.list_size()
|
||||
static Result<std::shared_ptr<Array>> FromArrays(const std::shared_ptr<Array>& values,
|
||||
std::shared_ptr<DataType> type);
|
||||
|
||||
protected:
|
||||
void SetData(const std::shared_ptr<ArrayData>& data);
|
||||
int32_t list_size_;
|
||||
|
||||
private:
|
||||
std::shared_ptr<Array> values_;
|
||||
};
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// Struct
|
||||
|
||||
/// Concrete Array class for struct data
|
||||
class ARROW_EXPORT StructArray : public Array {
|
||||
public:
|
||||
using TypeClass = StructType;
|
||||
|
||||
explicit StructArray(const std::shared_ptr<ArrayData>& data);
|
||||
|
||||
StructArray(const std::shared_ptr<DataType>& type, int64_t length,
|
||||
const std::vector<std::shared_ptr<Array>>& children,
|
||||
std::shared_ptr<Buffer> null_bitmap = NULLPTR,
|
||||
int64_t null_count = kUnknownNullCount, int64_t offset = 0);
|
||||
|
||||
/// \brief Return a StructArray from child arrays and field names.
|
||||
///
|
||||
/// The length and data type are automatically inferred from the arguments.
|
||||
/// There should be at least one child array.
|
||||
static Result<std::shared_ptr<StructArray>> Make(
|
||||
const ArrayVector& children, const std::vector<std::string>& field_names,
|
||||
std::shared_ptr<Buffer> null_bitmap = NULLPTR,
|
||||
int64_t null_count = kUnknownNullCount, int64_t offset = 0);
|
||||
|
||||
/// \brief Return a StructArray from child arrays and fields.
|
||||
///
|
||||
/// The length is automatically inferred from the arguments.
|
||||
/// There should be at least one child array. This method does not
|
||||
/// check that field types and child array types are consistent.
|
||||
static Result<std::shared_ptr<StructArray>> Make(
|
||||
const ArrayVector& children, const FieldVector& fields,
|
||||
std::shared_ptr<Buffer> null_bitmap = NULLPTR,
|
||||
int64_t null_count = kUnknownNullCount, int64_t offset = 0);
|
||||
|
||||
const StructType* struct_type() const;
|
||||
|
||||
// Return a shared pointer in case the requestor desires to share ownership
|
||||
// with this array. The returned array has its offset, length and null
|
||||
// count adjusted.
|
||||
const std::shared_ptr<Array>& field(int pos) const;
|
||||
|
||||
const ArrayVector& fields() const;
|
||||
|
||||
/// Returns null if name not found
|
||||
std::shared_ptr<Array> GetFieldByName(const std::string& name) const;
|
||||
|
||||
/// \brief Flatten this array as a vector of arrays, one for each field
|
||||
///
|
||||
/// \param[in] pool The pool to allocate null bitmaps from, if necessary
|
||||
Result<ArrayVector> Flatten(MemoryPool* pool = default_memory_pool()) const;
|
||||
|
||||
/// \brief Get one of the child arrays, combining its null bitmap
|
||||
/// with the parent struct array's bitmap.
|
||||
///
|
||||
/// \param[in] index Which child array to get
|
||||
/// \param[in] pool The pool to allocate null bitmaps from, if necessary
|
||||
Result<std::shared_ptr<Array>> GetFlattenedField(
|
||||
int index, MemoryPool* pool = default_memory_pool()) const;
|
||||
|
||||
private:
|
||||
// For caching boxed child data
|
||||
// XXX This is not handled in a thread-safe manner.
|
||||
mutable ArrayVector boxed_fields_;
|
||||
};
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// Union
|
||||
|
||||
/// Base class for SparseUnionArray and DenseUnionArray
|
||||
class ARROW_EXPORT UnionArray : public Array {
|
||||
public:
|
||||
using type_code_t = int8_t;
|
||||
|
||||
/// Note that this buffer does not account for any slice offset
|
||||
std::shared_ptr<Buffer> type_codes() const { return data_->buffers[1]; }
|
||||
|
||||
const type_code_t* raw_type_codes() const { return raw_type_codes_ + data_->offset; }
|
||||
|
||||
/// The logical type code of the value at index.
|
||||
type_code_t type_code(int64_t i) const { return raw_type_codes_[i + data_->offset]; }
|
||||
|
||||
/// The physical child id containing value at index.
|
||||
int child_id(int64_t i) const {
|
||||
return union_type_->child_ids()[raw_type_codes_[i + data_->offset]];
|
||||
}
|
||||
|
||||
const UnionType* union_type() const { return union_type_; }
|
||||
|
||||
UnionMode::type mode() const { return union_type_->mode(); }
|
||||
|
||||
/// \brief Return the given field as an individual array.
|
||||
///
|
||||
/// For sparse unions, the returned array has its offset, length and null
|
||||
/// count adjusted.
|
||||
std::shared_ptr<Array> field(int pos) const;
|
||||
|
||||
protected:
|
||||
void SetData(std::shared_ptr<ArrayData> data);
|
||||
|
||||
const type_code_t* raw_type_codes_;
|
||||
const UnionType* union_type_;
|
||||
|
||||
// For caching boxed child data
|
||||
mutable std::vector<std::shared_ptr<Array>> boxed_fields_;
|
||||
};
|
||||
|
||||
/// Concrete Array class for sparse union data
|
||||
class ARROW_EXPORT SparseUnionArray : public UnionArray {
|
||||
public:
|
||||
using TypeClass = SparseUnionType;
|
||||
|
||||
explicit SparseUnionArray(std::shared_ptr<ArrayData> data);
|
||||
|
||||
SparseUnionArray(std::shared_ptr<DataType> type, int64_t length, ArrayVector children,
|
||||
std::shared_ptr<Buffer> type_ids, int64_t offset = 0);
|
||||
|
||||
/// \brief Construct SparseUnionArray from type_ids and children
|
||||
///
|
||||
/// This function does the bare minimum of validation of the input types.
|
||||
///
|
||||
/// \param[in] type_ids An array of logical type ids for the union type
|
||||
/// \param[in] children Vector of children Arrays containing the data for each type.
|
||||
/// \param[in] type_codes Vector of type codes.
|
||||
static Result<std::shared_ptr<Array>> Make(const Array& type_ids, ArrayVector children,
|
||||
std::vector<type_code_t> type_codes) {
|
||||
return Make(std::move(type_ids), std::move(children), std::vector<std::string>{},
|
||||
std::move(type_codes));
|
||||
}
|
||||
|
||||
/// \brief Construct SparseUnionArray with custom field names from type_ids and children
|
||||
///
|
||||
/// This function does the bare minimum of validation of the input types.
|
||||
///
|
||||
/// \param[in] type_ids An array of logical type ids for the union type
|
||||
/// \param[in] children Vector of children Arrays containing the data for each type.
|
||||
/// \param[in] field_names Vector of strings containing the name of each field.
|
||||
/// \param[in] type_codes Vector of type codes.
|
||||
static Result<std::shared_ptr<Array>> Make(const Array& type_ids, ArrayVector children,
|
||||
std::vector<std::string> field_names = {},
|
||||
std::vector<type_code_t> type_codes = {});
|
||||
|
||||
const SparseUnionType* union_type() const {
|
||||
return internal::checked_cast<const SparseUnionType*>(union_type_);
|
||||
}
|
||||
|
||||
/// \brief Get one of the child arrays, adjusting its null bitmap
|
||||
/// where the union array type code does not match.
|
||||
///
|
||||
/// \param[in] index Which child array to get (i.e. the physical index, not the type
|
||||
/// code) \param[in] pool The pool to allocate null bitmaps from, if necessary
|
||||
Result<std::shared_ptr<Array>> GetFlattenedField(
|
||||
int index, MemoryPool* pool = default_memory_pool()) const;
|
||||
|
||||
protected:
|
||||
void SetData(std::shared_ptr<ArrayData> data);
|
||||
};
|
||||
|
||||
/// \brief Concrete Array class for dense union data
|
||||
///
|
||||
/// Note that union types do not have a validity bitmap
|
||||
class ARROW_EXPORT DenseUnionArray : public UnionArray {
|
||||
public:
|
||||
using TypeClass = DenseUnionType;
|
||||
|
||||
explicit DenseUnionArray(const std::shared_ptr<ArrayData>& data);
|
||||
|
||||
DenseUnionArray(std::shared_ptr<DataType> type, int64_t length, ArrayVector children,
|
||||
std::shared_ptr<Buffer> type_ids,
|
||||
std::shared_ptr<Buffer> value_offsets = NULLPTR, int64_t offset = 0);
|
||||
|
||||
/// \brief Construct DenseUnionArray from type_ids, value_offsets, and children
|
||||
///
|
||||
/// This function does the bare minimum of validation of the offsets and
|
||||
/// input types.
|
||||
///
|
||||
/// \param[in] type_ids An array of logical type ids for the union type
|
||||
/// \param[in] value_offsets An array of signed int32 values indicating the
|
||||
/// relative offset into the respective child array for the type in a given slot.
|
||||
/// The respective offsets for each child value array must be in order / increasing.
|
||||
/// \param[in] children Vector of children Arrays containing the data for each type.
|
||||
/// \param[in] type_codes Vector of type codes.
|
||||
static Result<std::shared_ptr<Array>> Make(const Array& type_ids,
|
||||
const Array& value_offsets,
|
||||
ArrayVector children,
|
||||
std::vector<type_code_t> type_codes) {
|
||||
return Make(type_ids, value_offsets, std::move(children), std::vector<std::string>{},
|
||||
std::move(type_codes));
|
||||
}
|
||||
|
||||
/// \brief Construct DenseUnionArray with custom field names from type_ids,
|
||||
/// value_offsets, and children
|
||||
///
|
||||
/// This function does the bare minimum of validation of the offsets and
|
||||
/// input types.
|
||||
///
|
||||
/// \param[in] type_ids An array of logical type ids for the union type
|
||||
/// \param[in] value_offsets An array of signed int32 values indicating the
|
||||
/// relative offset into the respective child array for the type in a given slot.
|
||||
/// The respective offsets for each child value array must be in order / increasing.
|
||||
/// \param[in] children Vector of children Arrays containing the data for each type.
|
||||
/// \param[in] field_names Vector of strings containing the name of each field.
|
||||
/// \param[in] type_codes Vector of type codes.
|
||||
static Result<std::shared_ptr<Array>> Make(const Array& type_ids,
|
||||
const Array& value_offsets,
|
||||
ArrayVector children,
|
||||
std::vector<std::string> field_names = {},
|
||||
std::vector<type_code_t> type_codes = {});
|
||||
|
||||
const DenseUnionType* union_type() const {
|
||||
return internal::checked_cast<const DenseUnionType*>(union_type_);
|
||||
}
|
||||
|
||||
/// Note that this buffer does not account for any slice offset
|
||||
std::shared_ptr<Buffer> value_offsets() const { return data_->buffers[2]; }
|
||||
|
||||
int32_t value_offset(int64_t i) const { return raw_value_offsets_[i + data_->offset]; }
|
||||
|
||||
const int32_t* raw_value_offsets() const { return raw_value_offsets_ + data_->offset; }
|
||||
|
||||
protected:
|
||||
const int32_t* raw_value_offsets_;
|
||||
|
||||
void SetData(const std::shared_ptr<ArrayData>& data);
|
||||
};
|
||||
|
||||
/// @}
|
||||
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,202 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// Array accessor types for primitive/C-type-based arrays, such as numbers,
|
||||
// boolean, and temporal types.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
|
||||
#include "arrow/array/array_base.h"
|
||||
#include "arrow/array/data.h"
|
||||
#include "arrow/stl_iterator.h"
|
||||
#include "arrow/type.h"
|
||||
#include "arrow/type_fwd.h" // IWYU pragma: export
|
||||
#include "arrow/type_traits.h"
|
||||
#include "arrow/util/bit_util.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
/// Concrete Array class for boolean data
|
||||
class ARROW_EXPORT BooleanArray : public PrimitiveArray {
|
||||
public:
|
||||
using TypeClass = BooleanType;
|
||||
using IteratorType = stl::ArrayIterator<BooleanArray>;
|
||||
|
||||
explicit BooleanArray(const std::shared_ptr<ArrayData>& data);
|
||||
|
||||
BooleanArray(int64_t length, const std::shared_ptr<Buffer>& data,
|
||||
const std::shared_ptr<Buffer>& null_bitmap = NULLPTR,
|
||||
int64_t null_count = kUnknownNullCount, int64_t offset = 0);
|
||||
|
||||
bool Value(int64_t i) const {
|
||||
return bit_util::GetBit(reinterpret_cast<const uint8_t*>(raw_values_),
|
||||
i + data_->offset);
|
||||
}
|
||||
|
||||
bool GetView(int64_t i) const { return Value(i); }
|
||||
|
||||
std::optional<bool> operator[](int64_t i) const { return *IteratorType(*this, i); }
|
||||
|
||||
/// \brief Return the number of false (0) values among the valid
|
||||
/// values. Result is not cached.
|
||||
int64_t false_count() const;
|
||||
|
||||
/// \brief Return the number of true (1) values among the valid
|
||||
/// values. Result is not cached.
|
||||
int64_t true_count() const;
|
||||
|
||||
IteratorType begin() const { return IteratorType(*this); }
|
||||
|
||||
IteratorType end() const { return IteratorType(*this, length()); }
|
||||
|
||||
protected:
|
||||
using PrimitiveArray::PrimitiveArray;
|
||||
};
|
||||
|
||||
/// \addtogroup numeric-arrays
|
||||
///
|
||||
/// @{
|
||||
|
||||
/// \brief Concrete Array class for numeric data with a corresponding C type
|
||||
///
|
||||
/// This class is templated on the corresponding DataType subclass for the
|
||||
/// given data, for example NumericArray<Int8Type> or NumericArray<Date32Type>.
|
||||
///
|
||||
/// Note that convenience aliases are available for all accepted types
|
||||
/// (for example Int8Array for NumericArray<Int8Type>).
|
||||
template <typename TYPE>
|
||||
class NumericArray : public PrimitiveArray {
|
||||
public:
|
||||
using TypeClass = TYPE;
|
||||
using value_type = typename TypeClass::c_type;
|
||||
using IteratorType = stl::ArrayIterator<NumericArray<TYPE>>;
|
||||
|
||||
explicit NumericArray(const std::shared_ptr<ArrayData>& data) : PrimitiveArray(data) {}
|
||||
|
||||
// Only enable this constructor without a type argument for types without additional
|
||||
// metadata
|
||||
template <typename T1 = TYPE>
|
||||
NumericArray(enable_if_parameter_free<T1, int64_t> length,
|
||||
const std::shared_ptr<Buffer>& data,
|
||||
const std::shared_ptr<Buffer>& null_bitmap = NULLPTR,
|
||||
int64_t null_count = kUnknownNullCount, int64_t offset = 0)
|
||||
: PrimitiveArray(TypeTraits<T1>::type_singleton(), length, data, null_bitmap,
|
||||
null_count, offset) {}
|
||||
|
||||
const value_type* raw_values() const {
|
||||
return reinterpret_cast<const value_type*>(raw_values_) + data_->offset;
|
||||
}
|
||||
|
||||
value_type Value(int64_t i) const { return raw_values()[i]; }
|
||||
|
||||
// For API compatibility with BinaryArray etc.
|
||||
value_type GetView(int64_t i) const { return Value(i); }
|
||||
|
||||
std::optional<value_type> operator[](int64_t i) const {
|
||||
return *IteratorType(*this, i);
|
||||
}
|
||||
|
||||
IteratorType begin() const { return IteratorType(*this); }
|
||||
|
||||
IteratorType end() const { return IteratorType(*this, length()); }
|
||||
|
||||
protected:
|
||||
using PrimitiveArray::PrimitiveArray;
|
||||
};
|
||||
|
||||
/// DayTimeArray
|
||||
/// ---------------------
|
||||
/// \brief Array of Day and Millisecond values.
|
||||
class ARROW_EXPORT DayTimeIntervalArray : public PrimitiveArray {
|
||||
public:
|
||||
using TypeClass = DayTimeIntervalType;
|
||||
using IteratorType = stl::ArrayIterator<DayTimeIntervalArray>;
|
||||
|
||||
explicit DayTimeIntervalArray(const std::shared_ptr<ArrayData>& data);
|
||||
|
||||
DayTimeIntervalArray(const std::shared_ptr<DataType>& type, int64_t length,
|
||||
const std::shared_ptr<Buffer>& data,
|
||||
const std::shared_ptr<Buffer>& null_bitmap = NULLPTR,
|
||||
int64_t null_count = kUnknownNullCount, int64_t offset = 0);
|
||||
|
||||
DayTimeIntervalArray(int64_t length, const std::shared_ptr<Buffer>& data,
|
||||
const std::shared_ptr<Buffer>& null_bitmap = NULLPTR,
|
||||
int64_t null_count = kUnknownNullCount, int64_t offset = 0);
|
||||
|
||||
TypeClass::DayMilliseconds GetValue(int64_t i) const;
|
||||
TypeClass::DayMilliseconds Value(int64_t i) const { return GetValue(i); }
|
||||
|
||||
// For compatibility with Take kernel.
|
||||
TypeClass::DayMilliseconds GetView(int64_t i) const { return GetValue(i); }
|
||||
|
||||
IteratorType begin() const { return IteratorType(*this); }
|
||||
|
||||
IteratorType end() const { return IteratorType(*this, length()); }
|
||||
|
||||
std::optional<TypeClass::DayMilliseconds> operator[](int64_t i) const {
|
||||
return *IteratorType(*this, i);
|
||||
}
|
||||
|
||||
int32_t byte_width() const { return sizeof(TypeClass::DayMilliseconds); }
|
||||
|
||||
const uint8_t* raw_values() const { return raw_values_ + data_->offset * byte_width(); }
|
||||
};
|
||||
|
||||
/// \brief Array of Month, Day and nanosecond values.
|
||||
class ARROW_EXPORT MonthDayNanoIntervalArray : public PrimitiveArray {
|
||||
public:
|
||||
using TypeClass = MonthDayNanoIntervalType;
|
||||
using IteratorType = stl::ArrayIterator<MonthDayNanoIntervalArray>;
|
||||
|
||||
explicit MonthDayNanoIntervalArray(const std::shared_ptr<ArrayData>& data);
|
||||
|
||||
MonthDayNanoIntervalArray(const std::shared_ptr<DataType>& type, int64_t length,
|
||||
const std::shared_ptr<Buffer>& data,
|
||||
const std::shared_ptr<Buffer>& null_bitmap = NULLPTR,
|
||||
int64_t null_count = kUnknownNullCount, int64_t offset = 0);
|
||||
|
||||
MonthDayNanoIntervalArray(int64_t length, const std::shared_ptr<Buffer>& data,
|
||||
const std::shared_ptr<Buffer>& null_bitmap = NULLPTR,
|
||||
int64_t null_count = kUnknownNullCount, int64_t offset = 0);
|
||||
|
||||
TypeClass::MonthDayNanos GetValue(int64_t i) const;
|
||||
TypeClass::MonthDayNanos Value(int64_t i) const { return GetValue(i); }
|
||||
|
||||
// For compatibility with Take kernel.
|
||||
TypeClass::MonthDayNanos GetView(int64_t i) const { return GetValue(i); }
|
||||
|
||||
IteratorType begin() const { return IteratorType(*this); }
|
||||
|
||||
IteratorType end() const { return IteratorType(*this, length()); }
|
||||
|
||||
std::optional<TypeClass::MonthDayNanos> operator[](int64_t i) const {
|
||||
return *IteratorType(*this, i);
|
||||
}
|
||||
|
||||
int32_t byte_width() const { return sizeof(TypeClass::MonthDayNanos); }
|
||||
|
||||
const uint8_t* raw_values() const { return raw_values_ + data_->offset * byte_width(); }
|
||||
};
|
||||
|
||||
/// @}
|
||||
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,217 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <cstring>
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
|
||||
#include "arrow/array/builder_base.h"
|
||||
#include "arrow/buffer.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/type.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
/// \addtogroup numeric-builders
|
||||
///
|
||||
/// @{
|
||||
|
||||
namespace internal {
|
||||
|
||||
class ARROW_EXPORT AdaptiveIntBuilderBase : public ArrayBuilder {
|
||||
public:
|
||||
AdaptiveIntBuilderBase(uint8_t start_int_size, MemoryPool* pool,
|
||||
int64_t alignment = kDefaultBufferAlignment);
|
||||
|
||||
explicit AdaptiveIntBuilderBase(MemoryPool* pool,
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: AdaptiveIntBuilderBase(sizeof(uint8_t), pool, alignment) {}
|
||||
|
||||
/// \brief Append multiple nulls
|
||||
/// \param[in] length the number of nulls to append
|
||||
Status AppendNulls(int64_t length) final {
|
||||
ARROW_RETURN_NOT_OK(CommitPendingData());
|
||||
if (ARROW_PREDICT_TRUE(length > 0)) {
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
memset(data_->mutable_data() + length_ * int_size_, 0, int_size_ * length);
|
||||
UnsafeSetNull(length);
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AppendNull() final {
|
||||
pending_data_[pending_pos_] = 0;
|
||||
pending_valid_[pending_pos_] = 0;
|
||||
pending_has_nulls_ = true;
|
||||
++pending_pos_;
|
||||
++length_;
|
||||
++null_count_;
|
||||
|
||||
if (ARROW_PREDICT_FALSE(pending_pos_ >= pending_size_)) {
|
||||
return CommitPendingData();
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AppendEmptyValues(int64_t length) final {
|
||||
ARROW_RETURN_NOT_OK(CommitPendingData());
|
||||
if (ARROW_PREDICT_TRUE(length > 0)) {
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
memset(data_->mutable_data() + length_ * int_size_, 0, int_size_ * length);
|
||||
UnsafeSetNotNull(length);
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AppendEmptyValue() final {
|
||||
pending_data_[pending_pos_] = 0;
|
||||
pending_valid_[pending_pos_] = 1;
|
||||
++pending_pos_;
|
||||
++length_;
|
||||
|
||||
if (ARROW_PREDICT_FALSE(pending_pos_ >= pending_size_)) {
|
||||
return CommitPendingData();
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
void Reset() override;
|
||||
Status Resize(int64_t capacity) override;
|
||||
|
||||
protected:
|
||||
Status AppendInternal(const uint64_t val) {
|
||||
pending_data_[pending_pos_] = val;
|
||||
pending_valid_[pending_pos_] = 1;
|
||||
++pending_pos_;
|
||||
++length_;
|
||||
|
||||
if (ARROW_PREDICT_FALSE(pending_pos_ >= pending_size_)) {
|
||||
return CommitPendingData();
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
virtual Status CommitPendingData() = 0;
|
||||
|
||||
template <typename new_type, typename old_type>
|
||||
typename std::enable_if<sizeof(old_type) >= sizeof(new_type), Status>::type
|
||||
ExpandIntSizeInternal();
|
||||
template <typename new_type, typename old_type>
|
||||
typename std::enable_if<(sizeof(old_type) < sizeof(new_type)), Status>::type
|
||||
ExpandIntSizeInternal();
|
||||
|
||||
std::shared_ptr<ResizableBuffer> data_;
|
||||
uint8_t* raw_data_ = NULLPTR;
|
||||
|
||||
const uint8_t start_int_size_;
|
||||
uint8_t int_size_;
|
||||
|
||||
static constexpr int32_t pending_size_ = 1024;
|
||||
uint8_t pending_valid_[pending_size_];
|
||||
uint64_t pending_data_[pending_size_];
|
||||
int32_t pending_pos_ = 0;
|
||||
bool pending_has_nulls_ = false;
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
class ARROW_EXPORT AdaptiveUIntBuilder : public internal::AdaptiveIntBuilderBase {
|
||||
public:
|
||||
explicit AdaptiveUIntBuilder(uint8_t start_int_size,
|
||||
MemoryPool* pool = default_memory_pool());
|
||||
|
||||
explicit AdaptiveUIntBuilder(MemoryPool* pool = default_memory_pool())
|
||||
: AdaptiveUIntBuilder(sizeof(uint8_t), pool) {}
|
||||
|
||||
using ArrayBuilder::Advance;
|
||||
using internal::AdaptiveIntBuilderBase::Reset;
|
||||
|
||||
/// Scalar append
|
||||
Status Append(const uint64_t val) { return AppendInternal(val); }
|
||||
|
||||
/// \brief Append a sequence of elements in one shot
|
||||
/// \param[in] values a contiguous C array of values
|
||||
/// \param[in] length the number of values to append
|
||||
/// \param[in] valid_bytes an optional sequence of bytes where non-zero
|
||||
/// indicates a valid (non-null) value
|
||||
/// \return Status
|
||||
Status AppendValues(const uint64_t* values, int64_t length,
|
||||
const uint8_t* valid_bytes = NULLPTR);
|
||||
|
||||
Status FinishInternal(std::shared_ptr<ArrayData>* out) override;
|
||||
|
||||
std::shared_ptr<DataType> type() const override;
|
||||
|
||||
protected:
|
||||
Status CommitPendingData() override;
|
||||
Status ExpandIntSize(uint8_t new_int_size);
|
||||
|
||||
Status AppendValuesInternal(const uint64_t* values, int64_t length,
|
||||
const uint8_t* valid_bytes);
|
||||
|
||||
template <typename new_type>
|
||||
Status ExpandIntSizeN();
|
||||
};
|
||||
|
||||
class ARROW_EXPORT AdaptiveIntBuilder : public internal::AdaptiveIntBuilderBase {
|
||||
public:
|
||||
explicit AdaptiveIntBuilder(uint8_t start_int_size,
|
||||
MemoryPool* pool = default_memory_pool(),
|
||||
int64_t alignment = kDefaultBufferAlignment);
|
||||
|
||||
explicit AdaptiveIntBuilder(MemoryPool* pool = default_memory_pool(),
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: AdaptiveIntBuilder(sizeof(uint8_t), pool, alignment) {}
|
||||
|
||||
using ArrayBuilder::Advance;
|
||||
using internal::AdaptiveIntBuilderBase::Reset;
|
||||
|
||||
/// Scalar append
|
||||
Status Append(const int64_t val) { return AppendInternal(static_cast<uint64_t>(val)); }
|
||||
|
||||
/// \brief Append a sequence of elements in one shot
|
||||
/// \param[in] values a contiguous C array of values
|
||||
/// \param[in] length the number of values to append
|
||||
/// \param[in] valid_bytes an optional sequence of bytes where non-zero
|
||||
/// indicates a valid (non-null) value
|
||||
/// \return Status
|
||||
Status AppendValues(const int64_t* values, int64_t length,
|
||||
const uint8_t* valid_bytes = NULLPTR);
|
||||
|
||||
Status FinishInternal(std::shared_ptr<ArrayData>* out) override;
|
||||
|
||||
std::shared_ptr<DataType> type() const override;
|
||||
|
||||
protected:
|
||||
Status CommitPendingData() override;
|
||||
Status ExpandIntSize(uint8_t new_int_size);
|
||||
|
||||
Status AppendValuesInternal(const int64_t* values, int64_t length,
|
||||
const uint8_t* valid_bytes);
|
||||
|
||||
template <typename new_type>
|
||||
Status ExpandIntSizeN();
|
||||
};
|
||||
|
||||
/// @}
|
||||
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,352 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <algorithm> // IWYU pragma: keep
|
||||
#include <cstdint>
|
||||
#include <limits>
|
||||
#include <memory>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/array/array_base.h"
|
||||
#include "arrow/array/array_primitive.h"
|
||||
#include "arrow/buffer.h"
|
||||
#include "arrow/buffer_builder.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/type_fwd.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
/// \defgroup numeric-builders Concrete builder subclasses for numeric types
|
||||
/// @{
|
||||
/// @}
|
||||
|
||||
/// \defgroup temporal-builders Concrete builder subclasses for temporal types
|
||||
/// @{
|
||||
/// @}
|
||||
|
||||
/// \defgroup binary-builders Concrete builder subclasses for binary types
|
||||
/// @{
|
||||
/// @}
|
||||
|
||||
/// \defgroup nested-builders Concrete builder subclasses for nested types
|
||||
/// @{
|
||||
/// @}
|
||||
|
||||
/// \defgroup dictionary-builders Concrete builder subclasses for dictionary types
|
||||
/// @{
|
||||
/// @}
|
||||
|
||||
constexpr int64_t kMinBuilderCapacity = 1 << 5;
|
||||
constexpr int64_t kListMaximumElements = std::numeric_limits<int32_t>::max() - 1;
|
||||
|
||||
/// Base class for all data array builders.
|
||||
///
|
||||
/// This class provides a facilities for incrementally building the null bitmap
|
||||
/// (see Append methods) and as a side effect the current number of slots and
|
||||
/// the null count.
|
||||
///
|
||||
/// \note Users are expected to use builders as one of the concrete types below.
|
||||
/// For example, ArrayBuilder* pointing to BinaryBuilder should be downcast before use.
|
||||
class ARROW_EXPORT ArrayBuilder {
|
||||
public:
|
||||
explicit ArrayBuilder(MemoryPool* pool, int64_t alignment = kDefaultBufferAlignment)
|
||||
: pool_(pool), alignment_(alignment), null_bitmap_builder_(pool, alignment) {}
|
||||
|
||||
ARROW_DEFAULT_MOVE_AND_ASSIGN(ArrayBuilder);
|
||||
|
||||
virtual ~ArrayBuilder() = default;
|
||||
|
||||
/// For nested types. Since the objects are owned by this class instance, we
|
||||
/// skip shared pointers and just return a raw pointer
|
||||
ArrayBuilder* child(int i) { return children_[i].get(); }
|
||||
|
||||
const std::shared_ptr<ArrayBuilder>& child_builder(int i) const { return children_[i]; }
|
||||
|
||||
int num_children() const { return static_cast<int>(children_.size()); }
|
||||
|
||||
virtual int64_t length() const { return length_; }
|
||||
int64_t null_count() const { return null_count_; }
|
||||
int64_t capacity() const { return capacity_; }
|
||||
|
||||
/// \brief Ensure that enough memory has been allocated to fit the indicated
|
||||
/// number of total elements in the builder, including any that have already
|
||||
/// been appended. Does not account for reallocations that may be due to
|
||||
/// variable size data, like binary values. To make space for incremental
|
||||
/// appends, use Reserve instead.
|
||||
///
|
||||
/// \param[in] capacity the minimum number of total array values to
|
||||
/// accommodate. Must be greater than the current capacity.
|
||||
/// \return Status
|
||||
virtual Status Resize(int64_t capacity);
|
||||
|
||||
/// \brief Ensure that there is enough space allocated to append the indicated
|
||||
/// number of elements without any further reallocation. Overallocation is
|
||||
/// used in order to minimize the impact of incremental Reserve() calls.
|
||||
/// Note that additional_capacity is relative to the current number of elements
|
||||
/// rather than to the current capacity, so calls to Reserve() which are not
|
||||
/// interspersed with addition of new elements may not increase the capacity.
|
||||
///
|
||||
/// \param[in] additional_capacity the number of additional array values
|
||||
/// \return Status
|
||||
Status Reserve(int64_t additional_capacity) {
|
||||
auto current_capacity = capacity();
|
||||
auto min_capacity = length() + additional_capacity;
|
||||
if (min_capacity <= current_capacity) return Status::OK();
|
||||
|
||||
// leave growth factor up to BufferBuilder
|
||||
auto new_capacity = BufferBuilder::GrowByFactor(current_capacity, min_capacity);
|
||||
return Resize(new_capacity);
|
||||
}
|
||||
|
||||
/// Reset the builder.
|
||||
virtual void Reset();
|
||||
|
||||
/// \brief Append a null value to builder
|
||||
virtual Status AppendNull() = 0;
|
||||
/// \brief Append a number of null values to builder
|
||||
virtual Status AppendNulls(int64_t length) = 0;
|
||||
|
||||
/// \brief Append a non-null value to builder
|
||||
///
|
||||
/// The appended value is an implementation detail, but the corresponding
|
||||
/// memory slot is guaranteed to be initialized.
|
||||
/// This method is useful when appending a null value to a parent nested type.
|
||||
virtual Status AppendEmptyValue() = 0;
|
||||
|
||||
/// \brief Append a number of non-null values to builder
|
||||
///
|
||||
/// The appended values are an implementation detail, but the corresponding
|
||||
/// memory slot is guaranteed to be initialized.
|
||||
/// This method is useful when appending null values to a parent nested type.
|
||||
virtual Status AppendEmptyValues(int64_t length) = 0;
|
||||
|
||||
/// \brief Append a value from a scalar
|
||||
Status AppendScalar(const Scalar& scalar) { return AppendScalar(scalar, 1); }
|
||||
virtual Status AppendScalar(const Scalar& scalar, int64_t n_repeats);
|
||||
virtual Status AppendScalars(const ScalarVector& scalars);
|
||||
|
||||
/// \brief Append a range of values from an array.
|
||||
///
|
||||
/// The given array must be the same type as the builder.
|
||||
virtual Status AppendArraySlice(const ArraySpan& array, int64_t offset,
|
||||
int64_t length) {
|
||||
return Status::NotImplemented("AppendArraySlice for builder for ", *type());
|
||||
}
|
||||
|
||||
/// For cases where raw data was memcpy'd into the internal buffers, allows us
|
||||
/// to advance the length of the builder. It is your responsibility to use
|
||||
/// this function responsibly.
|
||||
ARROW_DEPRECATED(
|
||||
"Deprecated in 6.0.0. ArrayBuilder::Advance is poorly supported and mostly "
|
||||
"untested.\nFor low-level control over buffer construction, use BufferBuilder "
|
||||
"or TypedBufferBuilder directly.")
|
||||
Status Advance(int64_t elements);
|
||||
|
||||
/// \brief Return result of builder as an internal generic ArrayData
|
||||
/// object. Resets builder except for dictionary builder
|
||||
///
|
||||
/// \param[out] out the finalized ArrayData object
|
||||
/// \return Status
|
||||
virtual Status FinishInternal(std::shared_ptr<ArrayData>* out) = 0;
|
||||
|
||||
/// \brief Return result of builder as an Array object.
|
||||
///
|
||||
/// The builder is reset except for DictionaryBuilder.
|
||||
///
|
||||
/// \param[out] out the finalized Array object
|
||||
/// \return Status
|
||||
Status Finish(std::shared_ptr<Array>* out);
|
||||
|
||||
/// \brief Return result of builder as an Array object.
|
||||
///
|
||||
/// The builder is reset except for DictionaryBuilder.
|
||||
///
|
||||
/// \return The finalized Array object
|
||||
Result<std::shared_ptr<Array>> Finish();
|
||||
|
||||
/// \brief Return the type of the built Array
|
||||
virtual std::shared_ptr<DataType> type() const = 0;
|
||||
|
||||
protected:
|
||||
/// Append to null bitmap
|
||||
Status AppendToBitmap(bool is_valid);
|
||||
|
||||
/// Vector append. Treat each zero byte as a null. If valid_bytes is null
|
||||
/// assume all of length bits are valid.
|
||||
Status AppendToBitmap(const uint8_t* valid_bytes, int64_t length);
|
||||
|
||||
/// Uniform append. Append N times the same validity bit.
|
||||
Status AppendToBitmap(int64_t num_bits, bool value);
|
||||
|
||||
/// Set the next length bits to not null (i.e. valid).
|
||||
Status SetNotNull(int64_t length);
|
||||
|
||||
// Unsafe operations (don't check capacity/don't resize)
|
||||
|
||||
void UnsafeAppendNull() { UnsafeAppendToBitmap(false); }
|
||||
|
||||
// Append to null bitmap, update the length
|
||||
void UnsafeAppendToBitmap(bool is_valid) {
|
||||
null_bitmap_builder_.UnsafeAppend(is_valid);
|
||||
++length_;
|
||||
if (!is_valid) ++null_count_;
|
||||
}
|
||||
|
||||
// Vector append. Treat each zero byte as a nullzero. If valid_bytes is null
|
||||
// assume all of length bits are valid.
|
||||
void UnsafeAppendToBitmap(const uint8_t* valid_bytes, int64_t length) {
|
||||
if (valid_bytes == NULLPTR) {
|
||||
return UnsafeSetNotNull(length);
|
||||
}
|
||||
null_bitmap_builder_.UnsafeAppend(valid_bytes, length);
|
||||
length_ += length;
|
||||
null_count_ = null_bitmap_builder_.false_count();
|
||||
}
|
||||
|
||||
// Vector append. Copy from a given bitmap. If bitmap is null assume
|
||||
// all of length bits are valid.
|
||||
void UnsafeAppendToBitmap(const uint8_t* bitmap, int64_t offset, int64_t length) {
|
||||
if (bitmap == NULLPTR) {
|
||||
return UnsafeSetNotNull(length);
|
||||
}
|
||||
null_bitmap_builder_.UnsafeAppend(bitmap, offset, length);
|
||||
length_ += length;
|
||||
null_count_ = null_bitmap_builder_.false_count();
|
||||
}
|
||||
|
||||
// Append the same validity value a given number of times.
|
||||
void UnsafeAppendToBitmap(const int64_t num_bits, bool value) {
|
||||
if (value) {
|
||||
UnsafeSetNotNull(num_bits);
|
||||
} else {
|
||||
UnsafeSetNull(num_bits);
|
||||
}
|
||||
}
|
||||
|
||||
void UnsafeAppendToBitmap(const std::vector<bool>& is_valid);
|
||||
|
||||
// Set the next validity bits to not null (i.e. valid).
|
||||
void UnsafeSetNotNull(int64_t length);
|
||||
|
||||
// Set the next validity bits to null (i.e. invalid).
|
||||
void UnsafeSetNull(int64_t length);
|
||||
|
||||
static Status TrimBuffer(const int64_t bytes_filled, ResizableBuffer* buffer);
|
||||
|
||||
/// \brief Finish to an array of the specified ArrayType
|
||||
template <typename ArrayType>
|
||||
Status FinishTyped(std::shared_ptr<ArrayType>* out) {
|
||||
std::shared_ptr<Array> out_untyped;
|
||||
ARROW_RETURN_NOT_OK(Finish(&out_untyped));
|
||||
*out = std::static_pointer_cast<ArrayType>(std::move(out_untyped));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Check the requested capacity for validity
|
||||
Status CheckCapacity(int64_t new_capacity) {
|
||||
if (ARROW_PREDICT_FALSE(new_capacity < 0)) {
|
||||
return Status::Invalid(
|
||||
"Resize capacity must be positive (requested: ", new_capacity, ")");
|
||||
}
|
||||
|
||||
if (ARROW_PREDICT_FALSE(new_capacity < length_)) {
|
||||
return Status::Invalid("Resize cannot downsize (requested: ", new_capacity,
|
||||
", current length: ", length_, ")");
|
||||
}
|
||||
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Check for array type
|
||||
Status CheckArrayType(const std::shared_ptr<DataType>& expected_type,
|
||||
const Array& array, const char* message);
|
||||
Status CheckArrayType(Type::type expected_type, const Array& array,
|
||||
const char* message);
|
||||
|
||||
MemoryPool* pool_;
|
||||
int64_t alignment_;
|
||||
|
||||
TypedBufferBuilder<bool> null_bitmap_builder_;
|
||||
int64_t null_count_ = 0;
|
||||
|
||||
// Array length, so far. Also, the index of the next element to be added
|
||||
int64_t length_ = 0;
|
||||
int64_t capacity_ = 0;
|
||||
|
||||
// Child value array builders. These are owned by this class
|
||||
std::vector<std::shared_ptr<ArrayBuilder>> children_;
|
||||
|
||||
private:
|
||||
ARROW_DISALLOW_COPY_AND_ASSIGN(ArrayBuilder);
|
||||
};
|
||||
|
||||
/// \brief Construct an empty ArrayBuilder corresponding to the data
|
||||
/// type
|
||||
/// \param[in] pool the MemoryPool to use for allocations
|
||||
/// \param[in] type the data type to create the builder for
|
||||
/// \param[out] out the created ArrayBuilder
|
||||
ARROW_EXPORT
|
||||
Status MakeBuilder(MemoryPool* pool, const std::shared_ptr<DataType>& type,
|
||||
std::unique_ptr<ArrayBuilder>* out);
|
||||
|
||||
inline Result<std::unique_ptr<ArrayBuilder>> MakeBuilder(
|
||||
const std::shared_ptr<DataType>& type, MemoryPool* pool = default_memory_pool()) {
|
||||
std::unique_ptr<ArrayBuilder> out;
|
||||
ARROW_RETURN_NOT_OK(MakeBuilder(pool, type, &out));
|
||||
return std::move(out);
|
||||
}
|
||||
|
||||
/// \brief Construct an empty ArrayBuilder corresponding to the data
|
||||
/// type, where any top-level or nested dictionary builders return the
|
||||
/// exact index type specified by the type.
|
||||
ARROW_EXPORT
|
||||
Status MakeBuilderExactIndex(MemoryPool* pool, const std::shared_ptr<DataType>& type,
|
||||
std::unique_ptr<ArrayBuilder>* out);
|
||||
|
||||
inline Result<std::unique_ptr<ArrayBuilder>> MakeBuilderExactIndex(
|
||||
const std::shared_ptr<DataType>& type, MemoryPool* pool = default_memory_pool()) {
|
||||
std::unique_ptr<ArrayBuilder> out;
|
||||
ARROW_RETURN_NOT_OK(MakeBuilderExactIndex(pool, type, &out));
|
||||
return std::move(out);
|
||||
}
|
||||
|
||||
/// \brief Construct an empty DictionaryBuilder initialized optionally
|
||||
/// with a pre-existing dictionary
|
||||
/// \param[in] pool the MemoryPool to use for allocations
|
||||
/// \param[in] type the dictionary type to create the builder for
|
||||
/// \param[in] dictionary the initial dictionary, if any. May be nullptr
|
||||
/// \param[out] out the created ArrayBuilder
|
||||
ARROW_EXPORT
|
||||
Status MakeDictionaryBuilder(MemoryPool* pool, const std::shared_ptr<DataType>& type,
|
||||
const std::shared_ptr<Array>& dictionary,
|
||||
std::unique_ptr<ArrayBuilder>* out);
|
||||
|
||||
inline Result<std::unique_ptr<ArrayBuilder>> MakeDictionaryBuilder(
|
||||
const std::shared_ptr<DataType>& type, const std::shared_ptr<Array>& dictionary,
|
||||
MemoryPool* pool = default_memory_pool()) {
|
||||
std::unique_ptr<ArrayBuilder> out;
|
||||
ARROW_RETURN_NOT_OK(MakeDictionaryBuilder(pool, type, dictionary, &out));
|
||||
return std::move(out);
|
||||
}
|
||||
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,707 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <array>
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <cstring>
|
||||
#include <limits>
|
||||
#include <memory>
|
||||
#include <numeric>
|
||||
#include <string>
|
||||
#include <string_view>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/array/array_base.h"
|
||||
#include "arrow/array/array_binary.h"
|
||||
#include "arrow/array/builder_base.h"
|
||||
#include "arrow/array/data.h"
|
||||
#include "arrow/buffer.h"
|
||||
#include "arrow/buffer_builder.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/type.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
/// \addtogroup binary-builders
|
||||
///
|
||||
/// @{
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// Binary and String
|
||||
|
||||
template <typename TYPE>
|
||||
class BaseBinaryBuilder : public ArrayBuilder {
|
||||
public:
|
||||
using TypeClass = TYPE;
|
||||
using offset_type = typename TypeClass::offset_type;
|
||||
|
||||
explicit BaseBinaryBuilder(MemoryPool* pool = default_memory_pool(),
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: ArrayBuilder(pool, alignment),
|
||||
offsets_builder_(pool, alignment),
|
||||
value_data_builder_(pool, alignment) {}
|
||||
|
||||
BaseBinaryBuilder(const std::shared_ptr<DataType>& type, MemoryPool* pool)
|
||||
: BaseBinaryBuilder(pool) {}
|
||||
|
||||
Status Append(const uint8_t* value, offset_type length) {
|
||||
ARROW_RETURN_NOT_OK(Reserve(1));
|
||||
ARROW_RETURN_NOT_OK(AppendNextOffset());
|
||||
// Safety check for UBSAN.
|
||||
if (ARROW_PREDICT_TRUE(length > 0)) {
|
||||
ARROW_RETURN_NOT_OK(ValidateOverflow(length));
|
||||
ARROW_RETURN_NOT_OK(value_data_builder_.Append(value, length));
|
||||
}
|
||||
|
||||
UnsafeAppendToBitmap(true);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status Append(const char* value, offset_type length) {
|
||||
return Append(reinterpret_cast<const uint8_t*>(value), length);
|
||||
}
|
||||
|
||||
Status Append(std::string_view value) {
|
||||
return Append(value.data(), static_cast<offset_type>(value.size()));
|
||||
}
|
||||
|
||||
/// Extend the last appended value by appending more data at the end
|
||||
///
|
||||
/// Unlike Append, this does not create a new offset.
|
||||
Status ExtendCurrent(const uint8_t* value, offset_type length) {
|
||||
// Safety check for UBSAN.
|
||||
if (ARROW_PREDICT_TRUE(length > 0)) {
|
||||
ARROW_RETURN_NOT_OK(ValidateOverflow(length));
|
||||
ARROW_RETURN_NOT_OK(value_data_builder_.Append(value, length));
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status ExtendCurrent(std::string_view value) {
|
||||
return ExtendCurrent(reinterpret_cast<const uint8_t*>(value.data()),
|
||||
static_cast<offset_type>(value.size()));
|
||||
}
|
||||
|
||||
Status AppendNulls(int64_t length) final {
|
||||
const int64_t num_bytes = value_data_builder_.length();
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
for (int64_t i = 0; i < length; ++i) {
|
||||
offsets_builder_.UnsafeAppend(static_cast<offset_type>(num_bytes));
|
||||
}
|
||||
UnsafeAppendToBitmap(length, false);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AppendNull() final {
|
||||
ARROW_RETURN_NOT_OK(AppendNextOffset());
|
||||
ARROW_RETURN_NOT_OK(Reserve(1));
|
||||
UnsafeAppendToBitmap(false);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AppendEmptyValue() final {
|
||||
ARROW_RETURN_NOT_OK(AppendNextOffset());
|
||||
ARROW_RETURN_NOT_OK(Reserve(1));
|
||||
UnsafeAppendToBitmap(true);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AppendEmptyValues(int64_t length) final {
|
||||
const int64_t num_bytes = value_data_builder_.length();
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
for (int64_t i = 0; i < length; ++i) {
|
||||
offsets_builder_.UnsafeAppend(static_cast<offset_type>(num_bytes));
|
||||
}
|
||||
UnsafeAppendToBitmap(length, true);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \brief Append without checking capacity
|
||||
///
|
||||
/// Offsets and data should have been presized using Reserve() and
|
||||
/// ReserveData(), respectively.
|
||||
void UnsafeAppend(const uint8_t* value, offset_type length) {
|
||||
UnsafeAppendNextOffset();
|
||||
value_data_builder_.UnsafeAppend(value, length);
|
||||
UnsafeAppendToBitmap(true);
|
||||
}
|
||||
|
||||
void UnsafeAppend(const char* value, offset_type length) {
|
||||
UnsafeAppend(reinterpret_cast<const uint8_t*>(value), length);
|
||||
}
|
||||
|
||||
void UnsafeAppend(const std::string& value) {
|
||||
UnsafeAppend(value.c_str(), static_cast<offset_type>(value.size()));
|
||||
}
|
||||
|
||||
void UnsafeAppend(std::string_view value) {
|
||||
UnsafeAppend(value.data(), static_cast<offset_type>(value.size()));
|
||||
}
|
||||
|
||||
/// Like ExtendCurrent, but do not check capacity
|
||||
void UnsafeExtendCurrent(const uint8_t* value, offset_type length) {
|
||||
value_data_builder_.UnsafeAppend(value, length);
|
||||
}
|
||||
|
||||
void UnsafeExtendCurrent(std::string_view value) {
|
||||
UnsafeExtendCurrent(reinterpret_cast<const uint8_t*>(value.data()),
|
||||
static_cast<offset_type>(value.size()));
|
||||
}
|
||||
|
||||
void UnsafeAppendNull() {
|
||||
const int64_t num_bytes = value_data_builder_.length();
|
||||
offsets_builder_.UnsafeAppend(static_cast<offset_type>(num_bytes));
|
||||
UnsafeAppendToBitmap(false);
|
||||
}
|
||||
|
||||
void UnsafeAppendEmptyValue() {
|
||||
const int64_t num_bytes = value_data_builder_.length();
|
||||
offsets_builder_.UnsafeAppend(static_cast<offset_type>(num_bytes));
|
||||
UnsafeAppendToBitmap(true);
|
||||
}
|
||||
|
||||
/// \brief Append a sequence of strings in one shot.
|
||||
///
|
||||
/// \param[in] values a vector of strings
|
||||
/// \param[in] valid_bytes an optional sequence of bytes where non-zero
|
||||
/// indicates a valid (non-null) value
|
||||
/// \return Status
|
||||
Status AppendValues(const std::vector<std::string>& values,
|
||||
const uint8_t* valid_bytes = NULLPTR) {
|
||||
std::size_t total_length = std::accumulate(
|
||||
values.begin(), values.end(), 0ULL,
|
||||
[](uint64_t sum, const std::string& str) { return sum + str.size(); });
|
||||
ARROW_RETURN_NOT_OK(Reserve(values.size()));
|
||||
ARROW_RETURN_NOT_OK(value_data_builder_.Reserve(total_length));
|
||||
ARROW_RETURN_NOT_OK(offsets_builder_.Reserve(values.size()));
|
||||
|
||||
if (valid_bytes != NULLPTR) {
|
||||
for (std::size_t i = 0; i < values.size(); ++i) {
|
||||
UnsafeAppendNextOffset();
|
||||
if (valid_bytes[i]) {
|
||||
value_data_builder_.UnsafeAppend(
|
||||
reinterpret_cast<const uint8_t*>(values[i].data()), values[i].size());
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (std::size_t i = 0; i < values.size(); ++i) {
|
||||
UnsafeAppendNextOffset();
|
||||
value_data_builder_.UnsafeAppend(
|
||||
reinterpret_cast<const uint8_t*>(values[i].data()), values[i].size());
|
||||
}
|
||||
}
|
||||
|
||||
UnsafeAppendToBitmap(valid_bytes, values.size());
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \brief Append a sequence of nul-terminated strings in one shot.
|
||||
/// If one of the values is NULL, it is processed as a null
|
||||
/// value even if the corresponding valid_bytes entry is 1.
|
||||
///
|
||||
/// \param[in] values a contiguous C array of nul-terminated char *
|
||||
/// \param[in] length the number of values to append
|
||||
/// \param[in] valid_bytes an optional sequence of bytes where non-zero
|
||||
/// indicates a valid (non-null) value
|
||||
/// \return Status
|
||||
Status AppendValues(const char** values, int64_t length,
|
||||
const uint8_t* valid_bytes = NULLPTR) {
|
||||
std::size_t total_length = 0;
|
||||
std::vector<std::size_t> value_lengths(length);
|
||||
bool have_null_value = false;
|
||||
for (int64_t i = 0; i < length; ++i) {
|
||||
if (values[i] != NULLPTR) {
|
||||
auto value_length = strlen(values[i]);
|
||||
value_lengths[i] = value_length;
|
||||
total_length += value_length;
|
||||
} else {
|
||||
have_null_value = true;
|
||||
}
|
||||
}
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
ARROW_RETURN_NOT_OK(ReserveData(total_length));
|
||||
|
||||
if (valid_bytes) {
|
||||
int64_t valid_bytes_offset = 0;
|
||||
for (int64_t i = 0; i < length; ++i) {
|
||||
UnsafeAppendNextOffset();
|
||||
if (valid_bytes[i]) {
|
||||
if (values[i]) {
|
||||
value_data_builder_.UnsafeAppend(reinterpret_cast<const uint8_t*>(values[i]),
|
||||
value_lengths[i]);
|
||||
} else {
|
||||
UnsafeAppendToBitmap(valid_bytes + valid_bytes_offset,
|
||||
i - valid_bytes_offset);
|
||||
UnsafeAppendToBitmap(false);
|
||||
valid_bytes_offset = i + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
UnsafeAppendToBitmap(valid_bytes + valid_bytes_offset, length - valid_bytes_offset);
|
||||
} else {
|
||||
if (have_null_value) {
|
||||
std::vector<uint8_t> valid_vector(length, 0);
|
||||
for (int64_t i = 0; i < length; ++i) {
|
||||
UnsafeAppendNextOffset();
|
||||
if (values[i]) {
|
||||
value_data_builder_.UnsafeAppend(reinterpret_cast<const uint8_t*>(values[i]),
|
||||
value_lengths[i]);
|
||||
valid_vector[i] = 1;
|
||||
}
|
||||
}
|
||||
UnsafeAppendToBitmap(valid_vector.data(), length);
|
||||
} else {
|
||||
for (int64_t i = 0; i < length; ++i) {
|
||||
UnsafeAppendNextOffset();
|
||||
value_data_builder_.UnsafeAppend(reinterpret_cast<const uint8_t*>(values[i]),
|
||||
value_lengths[i]);
|
||||
}
|
||||
UnsafeAppendToBitmap(NULLPTR, length);
|
||||
}
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AppendArraySlice(const ArraySpan& array, int64_t offset,
|
||||
int64_t length) override {
|
||||
auto bitmap = array.GetValues<uint8_t>(0, 0);
|
||||
auto offsets = array.GetValues<offset_type>(1);
|
||||
auto data = array.GetValues<uint8_t>(2, 0);
|
||||
for (int64_t i = 0; i < length; i++) {
|
||||
if (!bitmap || bit_util::GetBit(bitmap, array.offset + offset + i)) {
|
||||
const offset_type start = offsets[offset + i];
|
||||
const offset_type end = offsets[offset + i + 1];
|
||||
ARROW_RETURN_NOT_OK(Append(data + start, end - start));
|
||||
} else {
|
||||
ARROW_RETURN_NOT_OK(AppendNull());
|
||||
}
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
void Reset() override {
|
||||
ArrayBuilder::Reset();
|
||||
offsets_builder_.Reset();
|
||||
value_data_builder_.Reset();
|
||||
}
|
||||
|
||||
Status ValidateOverflow(int64_t new_bytes) {
|
||||
auto new_size = value_data_builder_.length() + new_bytes;
|
||||
if (ARROW_PREDICT_FALSE(new_size > memory_limit())) {
|
||||
return Status::CapacityError("array cannot contain more than ", memory_limit(),
|
||||
" bytes, have ", new_size);
|
||||
} else {
|
||||
return Status::OK();
|
||||
}
|
||||
}
|
||||
|
||||
Status Resize(int64_t capacity) override {
|
||||
ARROW_RETURN_NOT_OK(CheckCapacity(capacity));
|
||||
// One more than requested for offsets
|
||||
ARROW_RETURN_NOT_OK(offsets_builder_.Resize(capacity + 1));
|
||||
return ArrayBuilder::Resize(capacity);
|
||||
}
|
||||
|
||||
/// \brief Ensures there is enough allocated capacity to append the indicated
|
||||
/// number of bytes to the value data buffer without additional allocations
|
||||
Status ReserveData(int64_t elements) {
|
||||
ARROW_RETURN_NOT_OK(ValidateOverflow(elements));
|
||||
return value_data_builder_.Reserve(elements);
|
||||
}
|
||||
|
||||
Status FinishInternal(std::shared_ptr<ArrayData>* out) override {
|
||||
// Write final offset (values length)
|
||||
ARROW_RETURN_NOT_OK(AppendNextOffset());
|
||||
|
||||
// These buffers' padding zeroed by BufferBuilder
|
||||
std::shared_ptr<Buffer> offsets, value_data, null_bitmap;
|
||||
ARROW_RETURN_NOT_OK(offsets_builder_.Finish(&offsets));
|
||||
ARROW_RETURN_NOT_OK(value_data_builder_.Finish(&value_data));
|
||||
ARROW_RETURN_NOT_OK(null_bitmap_builder_.Finish(&null_bitmap));
|
||||
|
||||
*out = ArrayData::Make(type(), length_, {null_bitmap, offsets, value_data},
|
||||
null_count_, 0);
|
||||
Reset();
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \return data pointer of the value date builder
|
||||
const uint8_t* value_data() const { return value_data_builder_.data(); }
|
||||
/// \return size of values buffer so far
|
||||
int64_t value_data_length() const { return value_data_builder_.length(); }
|
||||
/// \return capacity of values buffer
|
||||
int64_t value_data_capacity() const { return value_data_builder_.capacity(); }
|
||||
|
||||
/// \return data pointer of the value date builder
|
||||
const offset_type* offsets_data() const { return offsets_builder_.data(); }
|
||||
|
||||
/// Temporary access to a value.
|
||||
///
|
||||
/// This pointer becomes invalid on the next modifying operation.
|
||||
const uint8_t* GetValue(int64_t i, offset_type* out_length) const {
|
||||
const offset_type* offsets = offsets_builder_.data();
|
||||
const auto offset = offsets[i];
|
||||
if (i == (length_ - 1)) {
|
||||
*out_length = static_cast<offset_type>(value_data_builder_.length()) - offset;
|
||||
} else {
|
||||
*out_length = offsets[i + 1] - offset;
|
||||
}
|
||||
return value_data_builder_.data() + offset;
|
||||
}
|
||||
|
||||
offset_type offset(int64_t i) const { return offsets_data()[i]; }
|
||||
|
||||
/// Temporary access to a value.
|
||||
///
|
||||
/// This view becomes invalid on the next modifying operation.
|
||||
std::string_view GetView(int64_t i) const {
|
||||
offset_type value_length;
|
||||
const uint8_t* value_data = GetValue(i, &value_length);
|
||||
return std::string_view(reinterpret_cast<const char*>(value_data), value_length);
|
||||
}
|
||||
|
||||
// Cannot make this a static attribute because of linking issues
|
||||
static constexpr int64_t memory_limit() {
|
||||
return std::numeric_limits<offset_type>::max() - 1;
|
||||
}
|
||||
|
||||
protected:
|
||||
TypedBufferBuilder<offset_type> offsets_builder_;
|
||||
TypedBufferBuilder<uint8_t> value_data_builder_;
|
||||
|
||||
Status AppendNextOffset() {
|
||||
const int64_t num_bytes = value_data_builder_.length();
|
||||
return offsets_builder_.Append(static_cast<offset_type>(num_bytes));
|
||||
}
|
||||
|
||||
void UnsafeAppendNextOffset() {
|
||||
const int64_t num_bytes = value_data_builder_.length();
|
||||
offsets_builder_.UnsafeAppend(static_cast<offset_type>(num_bytes));
|
||||
}
|
||||
};
|
||||
|
||||
/// \class BinaryBuilder
|
||||
/// \brief Builder class for variable-length binary data
|
||||
class ARROW_EXPORT BinaryBuilder : public BaseBinaryBuilder<BinaryType> {
|
||||
public:
|
||||
using BaseBinaryBuilder::BaseBinaryBuilder;
|
||||
|
||||
/// \cond FALSE
|
||||
using ArrayBuilder::Finish;
|
||||
/// \endcond
|
||||
|
||||
Status Finish(std::shared_ptr<BinaryArray>* out) { return FinishTyped(out); }
|
||||
|
||||
std::shared_ptr<DataType> type() const override { return binary(); }
|
||||
};
|
||||
|
||||
/// \class StringBuilder
|
||||
/// \brief Builder class for UTF8 strings
|
||||
class ARROW_EXPORT StringBuilder : public BinaryBuilder {
|
||||
public:
|
||||
using BinaryBuilder::BinaryBuilder;
|
||||
|
||||
/// \cond FALSE
|
||||
using ArrayBuilder::Finish;
|
||||
/// \endcond
|
||||
|
||||
Status Finish(std::shared_ptr<StringArray>* out) { return FinishTyped(out); }
|
||||
|
||||
std::shared_ptr<DataType> type() const override { return utf8(); }
|
||||
};
|
||||
|
||||
/// \class LargeBinaryBuilder
|
||||
/// \brief Builder class for large variable-length binary data
|
||||
class ARROW_EXPORT LargeBinaryBuilder : public BaseBinaryBuilder<LargeBinaryType> {
|
||||
public:
|
||||
using BaseBinaryBuilder::BaseBinaryBuilder;
|
||||
|
||||
/// \cond FALSE
|
||||
using ArrayBuilder::Finish;
|
||||
/// \endcond
|
||||
|
||||
Status Finish(std::shared_ptr<LargeBinaryArray>* out) { return FinishTyped(out); }
|
||||
|
||||
std::shared_ptr<DataType> type() const override { return large_binary(); }
|
||||
};
|
||||
|
||||
/// \class LargeStringBuilder
|
||||
/// \brief Builder class for large UTF8 strings
|
||||
class ARROW_EXPORT LargeStringBuilder : public LargeBinaryBuilder {
|
||||
public:
|
||||
using LargeBinaryBuilder::LargeBinaryBuilder;
|
||||
|
||||
/// \cond FALSE
|
||||
using ArrayBuilder::Finish;
|
||||
/// \endcond
|
||||
|
||||
Status Finish(std::shared_ptr<LargeStringArray>* out) { return FinishTyped(out); }
|
||||
|
||||
std::shared_ptr<DataType> type() const override { return large_utf8(); }
|
||||
};
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// FixedSizeBinaryBuilder
|
||||
|
||||
class ARROW_EXPORT FixedSizeBinaryBuilder : public ArrayBuilder {
|
||||
public:
|
||||
using TypeClass = FixedSizeBinaryType;
|
||||
|
||||
explicit FixedSizeBinaryBuilder(const std::shared_ptr<DataType>& type,
|
||||
MemoryPool* pool = default_memory_pool(),
|
||||
int64_t alignment = kDefaultBufferAlignment);
|
||||
|
||||
Status Append(const uint8_t* value) {
|
||||
ARROW_RETURN_NOT_OK(Reserve(1));
|
||||
UnsafeAppend(value);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status Append(const char* value) {
|
||||
return Append(reinterpret_cast<const uint8_t*>(value));
|
||||
}
|
||||
|
||||
Status Append(const std::string_view& view) {
|
||||
ARROW_RETURN_NOT_OK(Reserve(1));
|
||||
UnsafeAppend(view);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status Append(const std::string& s) {
|
||||
ARROW_RETURN_NOT_OK(Reserve(1));
|
||||
UnsafeAppend(s);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status Append(const Buffer& s) {
|
||||
ARROW_RETURN_NOT_OK(Reserve(1));
|
||||
UnsafeAppend(std::string_view(s));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status Append(const std::shared_ptr<Buffer>& s) { return Append(*s); }
|
||||
|
||||
template <size_t NBYTES>
|
||||
Status Append(const std::array<uint8_t, NBYTES>& value) {
|
||||
ARROW_RETURN_NOT_OK(Reserve(1));
|
||||
UnsafeAppend(
|
||||
std::string_view(reinterpret_cast<const char*>(value.data()), value.size()));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AppendValues(const uint8_t* data, int64_t length,
|
||||
const uint8_t* valid_bytes = NULLPTR);
|
||||
|
||||
Status AppendValues(const uint8_t* data, int64_t length, const uint8_t* validity,
|
||||
int64_t bitmap_offset);
|
||||
|
||||
Status AppendNull() final;
|
||||
Status AppendNulls(int64_t length) final;
|
||||
|
||||
Status AppendEmptyValue() final;
|
||||
Status AppendEmptyValues(int64_t length) final;
|
||||
|
||||
Status AppendArraySlice(const ArraySpan& array, int64_t offset,
|
||||
int64_t length) override {
|
||||
return AppendValues(
|
||||
array.GetValues<uint8_t>(1, 0) + ((array.offset + offset) * byte_width_), length,
|
||||
array.GetValues<uint8_t>(0, 0), array.offset + offset);
|
||||
}
|
||||
|
||||
void UnsafeAppend(const uint8_t* value) {
|
||||
UnsafeAppendToBitmap(true);
|
||||
if (ARROW_PREDICT_TRUE(byte_width_ > 0)) {
|
||||
byte_builder_.UnsafeAppend(value, byte_width_);
|
||||
}
|
||||
}
|
||||
|
||||
void UnsafeAppend(const char* value) {
|
||||
UnsafeAppend(reinterpret_cast<const uint8_t*>(value));
|
||||
}
|
||||
|
||||
void UnsafeAppend(std::string_view value) {
|
||||
#ifndef NDEBUG
|
||||
CheckValueSize(static_cast<size_t>(value.size()));
|
||||
#endif
|
||||
UnsafeAppend(reinterpret_cast<const uint8_t*>(value.data()));
|
||||
}
|
||||
|
||||
void UnsafeAppend(const Buffer& s) { UnsafeAppend(std::string_view(s)); }
|
||||
|
||||
void UnsafeAppend(const std::shared_ptr<Buffer>& s) { UnsafeAppend(*s); }
|
||||
|
||||
void UnsafeAppendNull() {
|
||||
UnsafeAppendToBitmap(false);
|
||||
byte_builder_.UnsafeAppend(/*num_copies=*/byte_width_, 0);
|
||||
}
|
||||
|
||||
Status ValidateOverflow(int64_t new_bytes) const {
|
||||
auto new_size = byte_builder_.length() + new_bytes;
|
||||
if (ARROW_PREDICT_FALSE(new_size > memory_limit())) {
|
||||
return Status::CapacityError("array cannot contain more than ", memory_limit(),
|
||||
" bytes, have ", new_size);
|
||||
} else {
|
||||
return Status::OK();
|
||||
}
|
||||
}
|
||||
|
||||
/// \brief Ensures there is enough allocated capacity to append the indicated
|
||||
/// number of bytes to the value data buffer without additional allocations
|
||||
Status ReserveData(int64_t elements) {
|
||||
ARROW_RETURN_NOT_OK(ValidateOverflow(elements));
|
||||
return byte_builder_.Reserve(elements);
|
||||
}
|
||||
|
||||
void Reset() override;
|
||||
Status Resize(int64_t capacity) override;
|
||||
Status FinishInternal(std::shared_ptr<ArrayData>* out) override;
|
||||
|
||||
/// \cond FALSE
|
||||
using ArrayBuilder::Finish;
|
||||
/// \endcond
|
||||
|
||||
Status Finish(std::shared_ptr<FixedSizeBinaryArray>* out) { return FinishTyped(out); }
|
||||
|
||||
/// \return size of values buffer so far
|
||||
int64_t value_data_length() const { return byte_builder_.length(); }
|
||||
|
||||
int32_t byte_width() const { return byte_width_; }
|
||||
|
||||
/// Temporary access to a value.
|
||||
///
|
||||
/// This pointer becomes invalid on the next modifying operation.
|
||||
const uint8_t* GetValue(int64_t i) const;
|
||||
|
||||
/// Temporary access to a value.
|
||||
///
|
||||
/// This view becomes invalid on the next modifying operation.
|
||||
std::string_view GetView(int64_t i) const;
|
||||
|
||||
static constexpr int64_t memory_limit() {
|
||||
return std::numeric_limits<int64_t>::max() - 1;
|
||||
}
|
||||
|
||||
std::shared_ptr<DataType> type() const override {
|
||||
return fixed_size_binary(byte_width_);
|
||||
}
|
||||
|
||||
protected:
|
||||
int32_t byte_width_;
|
||||
BufferBuilder byte_builder_;
|
||||
|
||||
/// Temporary access to a value.
|
||||
///
|
||||
/// This pointer becomes invalid on the next modifying operation.
|
||||
uint8_t* GetMutableValue(int64_t i) {
|
||||
uint8_t* data_ptr = byte_builder_.mutable_data();
|
||||
return data_ptr + i * byte_width_;
|
||||
}
|
||||
|
||||
void CheckValueSize(int64_t size);
|
||||
};
|
||||
|
||||
/// @}
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// Chunked builders: build a sequence of BinaryArray or StringArray that are
|
||||
// limited to a particular size (to the upper limit of 2GB)
|
||||
|
||||
namespace internal {
|
||||
|
||||
class ARROW_EXPORT ChunkedBinaryBuilder {
|
||||
public:
|
||||
explicit ChunkedBinaryBuilder(int32_t max_chunk_value_length,
|
||||
MemoryPool* pool = default_memory_pool());
|
||||
|
||||
ChunkedBinaryBuilder(int32_t max_chunk_value_length, int32_t max_chunk_length,
|
||||
MemoryPool* pool = default_memory_pool());
|
||||
|
||||
virtual ~ChunkedBinaryBuilder() = default;
|
||||
|
||||
Status Append(const uint8_t* value, int32_t length) {
|
||||
if (ARROW_PREDICT_FALSE(length + builder_->value_data_length() >
|
||||
max_chunk_value_length_)) {
|
||||
if (builder_->value_data_length() == 0) {
|
||||
// The current item is larger than max_chunk_size_;
|
||||
// this chunk will be oversize and hold *only* this item
|
||||
ARROW_RETURN_NOT_OK(builder_->Append(value, length));
|
||||
return NextChunk();
|
||||
}
|
||||
// The current item would cause builder_->value_data_length() to exceed
|
||||
// max_chunk_size_, so finish this chunk and append the current item to the next
|
||||
// chunk
|
||||
ARROW_RETURN_NOT_OK(NextChunk());
|
||||
return Append(value, length);
|
||||
}
|
||||
|
||||
if (ARROW_PREDICT_FALSE(builder_->length() == max_chunk_length_)) {
|
||||
// The current item would cause builder_->length() to exceed max_chunk_length_, so
|
||||
// finish this chunk and append the current item to the next chunk
|
||||
ARROW_RETURN_NOT_OK(NextChunk());
|
||||
}
|
||||
|
||||
return builder_->Append(value, length);
|
||||
}
|
||||
|
||||
Status Append(const std::string_view& value) {
|
||||
return Append(reinterpret_cast<const uint8_t*>(value.data()),
|
||||
static_cast<int32_t>(value.size()));
|
||||
}
|
||||
|
||||
Status AppendNull() {
|
||||
if (ARROW_PREDICT_FALSE(builder_->length() == max_chunk_length_)) {
|
||||
ARROW_RETURN_NOT_OK(NextChunk());
|
||||
}
|
||||
return builder_->AppendNull();
|
||||
}
|
||||
|
||||
Status Reserve(int64_t values);
|
||||
|
||||
virtual Status Finish(ArrayVector* out);
|
||||
|
||||
protected:
|
||||
Status NextChunk();
|
||||
|
||||
// maximum total character data size per chunk
|
||||
int64_t max_chunk_value_length_;
|
||||
|
||||
// maximum elements allowed per chunk
|
||||
int64_t max_chunk_length_ = kListMaximumElements;
|
||||
|
||||
// when Reserve() would cause builder_ to exceed its max_chunk_length_,
|
||||
// add to extra_capacity_ instead and wait to reserve until the next chunk
|
||||
int64_t extra_capacity_ = 0;
|
||||
|
||||
std::unique_ptr<BinaryBuilder> builder_;
|
||||
std::vector<std::shared_ptr<Array>> chunks_;
|
||||
};
|
||||
|
||||
class ARROW_EXPORT ChunkedStringBuilder : public ChunkedBinaryBuilder {
|
||||
public:
|
||||
using ChunkedBinaryBuilder::ChunkedBinaryBuilder;
|
||||
|
||||
Status Finish(ArrayVector* out) override;
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,102 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
|
||||
#include "arrow/array/array_decimal.h"
|
||||
#include "arrow/array/builder_base.h"
|
||||
#include "arrow/array/builder_binary.h"
|
||||
#include "arrow/array/data.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/type.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
/// \addtogroup numeric-builders
|
||||
///
|
||||
/// @{
|
||||
|
||||
class ARROW_EXPORT Decimal128Builder : public FixedSizeBinaryBuilder {
|
||||
public:
|
||||
using TypeClass = Decimal128Type;
|
||||
using ValueType = Decimal128;
|
||||
|
||||
explicit Decimal128Builder(const std::shared_ptr<DataType>& type,
|
||||
MemoryPool* pool = default_memory_pool(),
|
||||
int64_t alignment = kDefaultBufferAlignment);
|
||||
|
||||
using FixedSizeBinaryBuilder::Append;
|
||||
using FixedSizeBinaryBuilder::AppendValues;
|
||||
using FixedSizeBinaryBuilder::Reset;
|
||||
|
||||
Status Append(Decimal128 val);
|
||||
void UnsafeAppend(Decimal128 val);
|
||||
void UnsafeAppend(std::string_view val);
|
||||
|
||||
Status FinishInternal(std::shared_ptr<ArrayData>* out) override;
|
||||
|
||||
/// \cond FALSE
|
||||
using ArrayBuilder::Finish;
|
||||
/// \endcond
|
||||
|
||||
Status Finish(std::shared_ptr<Decimal128Array>* out) { return FinishTyped(out); }
|
||||
|
||||
std::shared_ptr<DataType> type() const override { return decimal_type_; }
|
||||
|
||||
protected:
|
||||
std::shared_ptr<Decimal128Type> decimal_type_;
|
||||
};
|
||||
|
||||
class ARROW_EXPORT Decimal256Builder : public FixedSizeBinaryBuilder {
|
||||
public:
|
||||
using TypeClass = Decimal256Type;
|
||||
using ValueType = Decimal256;
|
||||
|
||||
explicit Decimal256Builder(const std::shared_ptr<DataType>& type,
|
||||
MemoryPool* pool = default_memory_pool(),
|
||||
int64_t alignment = kDefaultBufferAlignment);
|
||||
|
||||
using FixedSizeBinaryBuilder::Append;
|
||||
using FixedSizeBinaryBuilder::AppendValues;
|
||||
using FixedSizeBinaryBuilder::Reset;
|
||||
|
||||
Status Append(const Decimal256& val);
|
||||
void UnsafeAppend(const Decimal256& val);
|
||||
void UnsafeAppend(std::string_view val);
|
||||
|
||||
Status FinishInternal(std::shared_ptr<ArrayData>* out) override;
|
||||
|
||||
/// \cond FALSE
|
||||
using ArrayBuilder::Finish;
|
||||
/// \endcond
|
||||
|
||||
Status Finish(std::shared_ptr<Decimal256Array>* out) { return FinishTyped(out); }
|
||||
|
||||
std::shared_ptr<DataType> type() const override { return decimal_type_; }
|
||||
|
||||
protected:
|
||||
std::shared_ptr<Decimal256Type> decimal_type_;
|
||||
};
|
||||
|
||||
using DecimalBuilder = Decimal128Builder;
|
||||
|
||||
/// @}
|
||||
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,730 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
|
||||
#include "arrow/array/array_base.h"
|
||||
#include "arrow/array/array_binary.h"
|
||||
#include "arrow/array/builder_adaptive.h" // IWYU pragma: export
|
||||
#include "arrow/array/builder_base.h" // IWYU pragma: export
|
||||
#include "arrow/array/builder_primitive.h" // IWYU pragma: export
|
||||
#include "arrow/array/data.h"
|
||||
#include "arrow/array/util.h"
|
||||
#include "arrow/scalar.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/type.h"
|
||||
#include "arrow/type_traits.h"
|
||||
#include "arrow/util/bit_block_counter.h"
|
||||
#include "arrow/util/checked_cast.h"
|
||||
#include "arrow/util/decimal.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// Dictionary builder
|
||||
|
||||
namespace internal {
|
||||
|
||||
template <typename T, typename Enable = void>
|
||||
struct DictionaryValue {
|
||||
using type = typename T::c_type;
|
||||
using PhysicalType = T;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct DictionaryValue<T, enable_if_base_binary<T>> {
|
||||
using type = std::string_view;
|
||||
using PhysicalType =
|
||||
typename std::conditional<std::is_same<typename T::offset_type, int32_t>::value,
|
||||
BinaryType, LargeBinaryType>::type;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct DictionaryValue<T, enable_if_fixed_size_binary<T>> {
|
||||
using type = std::string_view;
|
||||
using PhysicalType = BinaryType;
|
||||
};
|
||||
|
||||
class ARROW_EXPORT DictionaryMemoTable {
|
||||
public:
|
||||
DictionaryMemoTable(MemoryPool* pool, const std::shared_ptr<DataType>& type);
|
||||
DictionaryMemoTable(MemoryPool* pool, const std::shared_ptr<Array>& dictionary);
|
||||
~DictionaryMemoTable();
|
||||
|
||||
Status GetArrayData(int64_t start_offset, std::shared_ptr<ArrayData>* out);
|
||||
|
||||
/// \brief Insert new memo values
|
||||
Status InsertValues(const Array& values);
|
||||
|
||||
int32_t size() const;
|
||||
|
||||
template <typename T>
|
||||
Status GetOrInsert(typename DictionaryValue<T>::type value, int32_t* out) {
|
||||
// We want to keep the DictionaryMemoTable implementation private, also we can't
|
||||
// use extern template classes because of compiler issues (MinGW?). Instead,
|
||||
// we expose explicit function overrides for each supported physical type.
|
||||
const typename DictionaryValue<T>::PhysicalType* physical_type = NULLPTR;
|
||||
return GetOrInsert(physical_type, value, out);
|
||||
}
|
||||
|
||||
private:
|
||||
Status GetOrInsert(const BooleanType*, bool value, int32_t* out);
|
||||
Status GetOrInsert(const Int8Type*, int8_t value, int32_t* out);
|
||||
Status GetOrInsert(const Int16Type*, int16_t value, int32_t* out);
|
||||
Status GetOrInsert(const Int32Type*, int32_t value, int32_t* out);
|
||||
Status GetOrInsert(const Int64Type*, int64_t value, int32_t* out);
|
||||
Status GetOrInsert(const UInt8Type*, uint8_t value, int32_t* out);
|
||||
Status GetOrInsert(const UInt16Type*, uint16_t value, int32_t* out);
|
||||
Status GetOrInsert(const UInt32Type*, uint32_t value, int32_t* out);
|
||||
Status GetOrInsert(const UInt64Type*, uint64_t value, int32_t* out);
|
||||
Status GetOrInsert(const DurationType*, int64_t value, int32_t* out);
|
||||
Status GetOrInsert(const TimestampType*, int64_t value, int32_t* out);
|
||||
Status GetOrInsert(const Date32Type*, int32_t value, int32_t* out);
|
||||
Status GetOrInsert(const Date64Type*, int64_t value, int32_t* out);
|
||||
Status GetOrInsert(const Time32Type*, int32_t value, int32_t* out);
|
||||
Status GetOrInsert(const Time64Type*, int64_t value, int32_t* out);
|
||||
Status GetOrInsert(const MonthDayNanoIntervalType*,
|
||||
MonthDayNanoIntervalType::MonthDayNanos value, int32_t* out);
|
||||
Status GetOrInsert(const DayTimeIntervalType*,
|
||||
DayTimeIntervalType::DayMilliseconds value, int32_t* out);
|
||||
Status GetOrInsert(const MonthIntervalType*, int32_t value, int32_t* out);
|
||||
Status GetOrInsert(const FloatType*, float value, int32_t* out);
|
||||
Status GetOrInsert(const DoubleType*, double value, int32_t* out);
|
||||
|
||||
Status GetOrInsert(const BinaryType*, std::string_view value, int32_t* out);
|
||||
Status GetOrInsert(const LargeBinaryType*, std::string_view value, int32_t* out);
|
||||
|
||||
class DictionaryMemoTableImpl;
|
||||
std::unique_ptr<DictionaryMemoTableImpl> impl_;
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
/// \addtogroup dictionary-builders
|
||||
///
|
||||
/// @{
|
||||
|
||||
namespace internal {
|
||||
|
||||
/// \brief Array builder for created encoded DictionaryArray from
|
||||
/// dense array
|
||||
///
|
||||
/// Unlike other builders, dictionary builder does not completely
|
||||
/// reset the state on Finish calls.
|
||||
template <typename BuilderType, typename T>
|
||||
class DictionaryBuilderBase : public ArrayBuilder {
|
||||
public:
|
||||
using TypeClass = DictionaryType;
|
||||
using Value = typename DictionaryValue<T>::type;
|
||||
|
||||
// WARNING: the type given below is the value type, not the DictionaryType.
|
||||
// The DictionaryType is instantiated on the Finish() call.
|
||||
template <typename B = BuilderType, typename T1 = T>
|
||||
DictionaryBuilderBase(uint8_t start_int_size,
|
||||
enable_if_t<std::is_base_of<AdaptiveIntBuilderBase, B>::value &&
|
||||
!is_fixed_size_binary_type<T1>::value,
|
||||
const std::shared_ptr<DataType>&>
|
||||
value_type,
|
||||
MemoryPool* pool = default_memory_pool(),
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: ArrayBuilder(pool, alignment),
|
||||
memo_table_(new internal::DictionaryMemoTable(pool, value_type)),
|
||||
delta_offset_(0),
|
||||
byte_width_(-1),
|
||||
indices_builder_(start_int_size, pool, alignment),
|
||||
value_type_(value_type) {}
|
||||
|
||||
template <typename T1 = T>
|
||||
explicit DictionaryBuilderBase(
|
||||
enable_if_t<!is_fixed_size_binary_type<T1>::value, const std::shared_ptr<DataType>&>
|
||||
value_type,
|
||||
MemoryPool* pool = default_memory_pool(),
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: ArrayBuilder(pool, alignment),
|
||||
memo_table_(new internal::DictionaryMemoTable(pool, value_type)),
|
||||
delta_offset_(0),
|
||||
byte_width_(-1),
|
||||
indices_builder_(pool, alignment),
|
||||
value_type_(value_type) {}
|
||||
|
||||
template <typename T1 = T>
|
||||
explicit DictionaryBuilderBase(
|
||||
const std::shared_ptr<DataType>& index_type,
|
||||
enable_if_t<!is_fixed_size_binary_type<T1>::value, const std::shared_ptr<DataType>&>
|
||||
value_type,
|
||||
MemoryPool* pool = default_memory_pool(),
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: ArrayBuilder(pool, alignment),
|
||||
memo_table_(new internal::DictionaryMemoTable(pool, value_type)),
|
||||
delta_offset_(0),
|
||||
byte_width_(-1),
|
||||
indices_builder_(index_type, pool, alignment),
|
||||
value_type_(value_type) {}
|
||||
|
||||
template <typename B = BuilderType, typename T1 = T>
|
||||
DictionaryBuilderBase(uint8_t start_int_size,
|
||||
enable_if_t<std::is_base_of<AdaptiveIntBuilderBase, B>::value &&
|
||||
is_fixed_size_binary_type<T1>::value,
|
||||
const std::shared_ptr<DataType>&>
|
||||
value_type,
|
||||
MemoryPool* pool = default_memory_pool(),
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: ArrayBuilder(pool, alignment),
|
||||
memo_table_(new internal::DictionaryMemoTable(pool, value_type)),
|
||||
delta_offset_(0),
|
||||
byte_width_(static_cast<const T1&>(*value_type).byte_width()),
|
||||
indices_builder_(start_int_size, pool, alignment),
|
||||
value_type_(value_type) {}
|
||||
|
||||
template <typename T1 = T>
|
||||
explicit DictionaryBuilderBase(
|
||||
enable_if_fixed_size_binary<T1, const std::shared_ptr<DataType>&> value_type,
|
||||
MemoryPool* pool = default_memory_pool(),
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: ArrayBuilder(pool, alignment),
|
||||
memo_table_(new internal::DictionaryMemoTable(pool, value_type)),
|
||||
delta_offset_(0),
|
||||
byte_width_(static_cast<const T1&>(*value_type).byte_width()),
|
||||
indices_builder_(pool, alignment),
|
||||
value_type_(value_type) {}
|
||||
|
||||
template <typename T1 = T>
|
||||
explicit DictionaryBuilderBase(
|
||||
const std::shared_ptr<DataType>& index_type,
|
||||
enable_if_fixed_size_binary<T1, const std::shared_ptr<DataType>&> value_type,
|
||||
MemoryPool* pool = default_memory_pool(),
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: ArrayBuilder(pool, alignment),
|
||||
memo_table_(new internal::DictionaryMemoTable(pool, value_type)),
|
||||
delta_offset_(0),
|
||||
byte_width_(static_cast<const T1&>(*value_type).byte_width()),
|
||||
indices_builder_(index_type, pool, alignment),
|
||||
value_type_(value_type) {}
|
||||
|
||||
template <typename T1 = T>
|
||||
explicit DictionaryBuilderBase(
|
||||
enable_if_parameter_free<T1, MemoryPool*> pool = default_memory_pool())
|
||||
: DictionaryBuilderBase<BuilderType, T1>(TypeTraits<T1>::type_singleton(), pool) {}
|
||||
|
||||
// This constructor doesn't check for errors. Use InsertMemoValues instead.
|
||||
explicit DictionaryBuilderBase(const std::shared_ptr<Array>& dictionary,
|
||||
MemoryPool* pool = default_memory_pool(),
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: ArrayBuilder(pool, alignment),
|
||||
memo_table_(new internal::DictionaryMemoTable(pool, dictionary)),
|
||||
delta_offset_(0),
|
||||
byte_width_(-1),
|
||||
indices_builder_(pool, alignment),
|
||||
value_type_(dictionary->type()) {}
|
||||
|
||||
~DictionaryBuilderBase() override = default;
|
||||
|
||||
/// \brief The current number of entries in the dictionary
|
||||
int64_t dictionary_length() const { return memo_table_->size(); }
|
||||
|
||||
/// \brief The value byte width (for FixedSizeBinaryType)
|
||||
template <typename T1 = T>
|
||||
enable_if_fixed_size_binary<T1, int32_t> byte_width() const {
|
||||
return byte_width_;
|
||||
}
|
||||
|
||||
/// \brief Append a scalar value
|
||||
Status Append(Value value) {
|
||||
ARROW_RETURN_NOT_OK(Reserve(1));
|
||||
|
||||
int32_t memo_index;
|
||||
ARROW_RETURN_NOT_OK(memo_table_->GetOrInsert<T>(value, &memo_index));
|
||||
ARROW_RETURN_NOT_OK(indices_builder_.Append(memo_index));
|
||||
length_ += 1;
|
||||
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \brief Append a fixed-width string (only for FixedSizeBinaryType)
|
||||
template <typename T1 = T>
|
||||
enable_if_fixed_size_binary<T1, Status> Append(const uint8_t* value) {
|
||||
return Append(std::string_view(reinterpret_cast<const char*>(value), byte_width_));
|
||||
}
|
||||
|
||||
/// \brief Append a fixed-width string (only for FixedSizeBinaryType)
|
||||
template <typename T1 = T>
|
||||
enable_if_fixed_size_binary<T1, Status> Append(const char* value) {
|
||||
return Append(std::string_view(value, byte_width_));
|
||||
}
|
||||
|
||||
/// \brief Append a string (only for binary types)
|
||||
template <typename T1 = T>
|
||||
enable_if_binary_like<T1, Status> Append(const uint8_t* value, int32_t length) {
|
||||
return Append(reinterpret_cast<const char*>(value), length);
|
||||
}
|
||||
|
||||
/// \brief Append a string (only for binary types)
|
||||
template <typename T1 = T>
|
||||
enable_if_binary_like<T1, Status> Append(const char* value, int32_t length) {
|
||||
return Append(std::string_view(value, length));
|
||||
}
|
||||
|
||||
/// \brief Append a string (only for string types)
|
||||
template <typename T1 = T>
|
||||
enable_if_string_like<T1, Status> Append(const char* value, int32_t length) {
|
||||
return Append(std::string_view(value, length));
|
||||
}
|
||||
|
||||
/// \brief Append a decimal (only for Decimal128Type)
|
||||
template <typename T1 = T>
|
||||
enable_if_decimal128<T1, Status> Append(const Decimal128& value) {
|
||||
uint8_t data[16];
|
||||
value.ToBytes(data);
|
||||
return Append(data, 16);
|
||||
}
|
||||
|
||||
/// \brief Append a decimal (only for Decimal128Type)
|
||||
template <typename T1 = T>
|
||||
enable_if_decimal256<T1, Status> Append(const Decimal256& value) {
|
||||
uint8_t data[32];
|
||||
value.ToBytes(data);
|
||||
return Append(data, 32);
|
||||
}
|
||||
|
||||
/// \brief Append a scalar null value
|
||||
Status AppendNull() final {
|
||||
length_ += 1;
|
||||
null_count_ += 1;
|
||||
|
||||
return indices_builder_.AppendNull();
|
||||
}
|
||||
|
||||
Status AppendNulls(int64_t length) final {
|
||||
length_ += length;
|
||||
null_count_ += length;
|
||||
|
||||
return indices_builder_.AppendNulls(length);
|
||||
}
|
||||
|
||||
Status AppendEmptyValue() final {
|
||||
length_ += 1;
|
||||
|
||||
return indices_builder_.AppendEmptyValue();
|
||||
}
|
||||
|
||||
Status AppendEmptyValues(int64_t length) final {
|
||||
length_ += length;
|
||||
|
||||
return indices_builder_.AppendEmptyValues(length);
|
||||
}
|
||||
|
||||
Status AppendScalar(const Scalar& scalar, int64_t n_repeats) override {
|
||||
if (!scalar.is_valid) return AppendNulls(n_repeats);
|
||||
|
||||
const auto& dict_ty = internal::checked_cast<const DictionaryType&>(*scalar.type);
|
||||
const DictionaryScalar& dict_scalar =
|
||||
internal::checked_cast<const DictionaryScalar&>(scalar);
|
||||
const auto& dict = internal::checked_cast<const typename TypeTraits<T>::ArrayType&>(
|
||||
*dict_scalar.value.dictionary);
|
||||
ARROW_RETURN_NOT_OK(Reserve(n_repeats));
|
||||
switch (dict_ty.index_type()->id()) {
|
||||
case Type::UINT8:
|
||||
return AppendScalarImpl<UInt8Type>(dict, *dict_scalar.value.index, n_repeats);
|
||||
case Type::INT8:
|
||||
return AppendScalarImpl<Int8Type>(dict, *dict_scalar.value.index, n_repeats);
|
||||
case Type::UINT16:
|
||||
return AppendScalarImpl<UInt16Type>(dict, *dict_scalar.value.index, n_repeats);
|
||||
case Type::INT16:
|
||||
return AppendScalarImpl<Int16Type>(dict, *dict_scalar.value.index, n_repeats);
|
||||
case Type::UINT32:
|
||||
return AppendScalarImpl<UInt32Type>(dict, *dict_scalar.value.index, n_repeats);
|
||||
case Type::INT32:
|
||||
return AppendScalarImpl<Int32Type>(dict, *dict_scalar.value.index, n_repeats);
|
||||
case Type::UINT64:
|
||||
return AppendScalarImpl<UInt64Type>(dict, *dict_scalar.value.index, n_repeats);
|
||||
case Type::INT64:
|
||||
return AppendScalarImpl<Int64Type>(dict, *dict_scalar.value.index, n_repeats);
|
||||
default:
|
||||
return Status::TypeError("Invalid index type: ", dict_ty);
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AppendScalars(const ScalarVector& scalars) override {
|
||||
for (const auto& scalar : scalars) {
|
||||
ARROW_RETURN_NOT_OK(AppendScalar(*scalar, /*n_repeats=*/1));
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AppendArraySlice(const ArraySpan& array, int64_t offset, int64_t length) final {
|
||||
// Visit the indices and insert the unpacked values.
|
||||
const auto& dict_ty = internal::checked_cast<const DictionaryType&>(*array.type);
|
||||
// See if possible to avoid using ToArrayData here
|
||||
const typename TypeTraits<T>::ArrayType dict(array.dictionary().ToArrayData());
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
switch (dict_ty.index_type()->id()) {
|
||||
case Type::UINT8:
|
||||
return AppendArraySliceImpl<uint8_t>(dict, array, offset, length);
|
||||
case Type::INT8:
|
||||
return AppendArraySliceImpl<int8_t>(dict, array, offset, length);
|
||||
case Type::UINT16:
|
||||
return AppendArraySliceImpl<uint16_t>(dict, array, offset, length);
|
||||
case Type::INT16:
|
||||
return AppendArraySliceImpl<int16_t>(dict, array, offset, length);
|
||||
case Type::UINT32:
|
||||
return AppendArraySliceImpl<uint32_t>(dict, array, offset, length);
|
||||
case Type::INT32:
|
||||
return AppendArraySliceImpl<int32_t>(dict, array, offset, length);
|
||||
case Type::UINT64:
|
||||
return AppendArraySliceImpl<uint64_t>(dict, array, offset, length);
|
||||
case Type::INT64:
|
||||
return AppendArraySliceImpl<int64_t>(dict, array, offset, length);
|
||||
default:
|
||||
return Status::TypeError("Invalid index type: ", dict_ty);
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \brief Insert values into the dictionary's memo, but do not append any
|
||||
/// indices. Can be used to initialize a new builder with known dictionary
|
||||
/// values
|
||||
/// \param[in] values dictionary values to add to memo. Type must match
|
||||
/// builder type
|
||||
Status InsertMemoValues(const Array& values) {
|
||||
return memo_table_->InsertValues(values);
|
||||
}
|
||||
|
||||
/// \brief Append a whole dense array to the builder
|
||||
template <typename T1 = T>
|
||||
enable_if_t<!is_fixed_size_binary_type<T1>::value, Status> AppendArray(
|
||||
const Array& array) {
|
||||
using ArrayType = typename TypeTraits<T>::ArrayType;
|
||||
|
||||
#ifndef NDEBUG
|
||||
ARROW_RETURN_NOT_OK(ArrayBuilder::CheckArrayType(
|
||||
value_type_, array, "Wrong value type of array to be appended"));
|
||||
#endif
|
||||
|
||||
const auto& concrete_array = static_cast<const ArrayType&>(array);
|
||||
for (int64_t i = 0; i < array.length(); i++) {
|
||||
if (array.IsNull(i)) {
|
||||
ARROW_RETURN_NOT_OK(AppendNull());
|
||||
} else {
|
||||
ARROW_RETURN_NOT_OK(Append(concrete_array.GetView(i)));
|
||||
}
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
template <typename T1 = T>
|
||||
enable_if_fixed_size_binary<T1, Status> AppendArray(const Array& array) {
|
||||
#ifndef NDEBUG
|
||||
ARROW_RETURN_NOT_OK(ArrayBuilder::CheckArrayType(
|
||||
value_type_, array, "Wrong value type of array to be appended"));
|
||||
#endif
|
||||
|
||||
const auto& concrete_array = static_cast<const FixedSizeBinaryArray&>(array);
|
||||
for (int64_t i = 0; i < array.length(); i++) {
|
||||
if (array.IsNull(i)) {
|
||||
ARROW_RETURN_NOT_OK(AppendNull());
|
||||
} else {
|
||||
ARROW_RETURN_NOT_OK(Append(concrete_array.GetValue(i)));
|
||||
}
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
void Reset() override {
|
||||
// Perform a partial reset. Call ResetFull to also reset the accumulated
|
||||
// dictionary values
|
||||
ArrayBuilder::Reset();
|
||||
indices_builder_.Reset();
|
||||
}
|
||||
|
||||
/// \brief Reset and also clear accumulated dictionary values in memo table
|
||||
void ResetFull() {
|
||||
Reset();
|
||||
memo_table_.reset(new internal::DictionaryMemoTable(pool_, value_type_));
|
||||
}
|
||||
|
||||
Status Resize(int64_t capacity) override {
|
||||
ARROW_RETURN_NOT_OK(CheckCapacity(capacity));
|
||||
capacity = std::max(capacity, kMinBuilderCapacity);
|
||||
ARROW_RETURN_NOT_OK(indices_builder_.Resize(capacity));
|
||||
capacity_ = indices_builder_.capacity();
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \brief Return dictionary indices and a delta dictionary since the last
|
||||
/// time that Finish or FinishDelta were called, and reset state of builder
|
||||
/// (except the memo table)
|
||||
Status FinishDelta(std::shared_ptr<Array>* out_indices,
|
||||
std::shared_ptr<Array>* out_delta) {
|
||||
std::shared_ptr<ArrayData> indices_data;
|
||||
std::shared_ptr<ArrayData> delta_data;
|
||||
ARROW_RETURN_NOT_OK(FinishWithDictOffset(delta_offset_, &indices_data, &delta_data));
|
||||
*out_indices = MakeArray(indices_data);
|
||||
*out_delta = MakeArray(delta_data);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \cond FALSE
|
||||
using ArrayBuilder::Finish;
|
||||
/// \endcond
|
||||
|
||||
Status Finish(std::shared_ptr<DictionaryArray>* out) { return FinishTyped(out); }
|
||||
|
||||
std::shared_ptr<DataType> type() const override {
|
||||
return ::arrow::dictionary(indices_builder_.type(), value_type_);
|
||||
}
|
||||
|
||||
protected:
|
||||
template <typename c_type>
|
||||
Status AppendArraySliceImpl(const typename TypeTraits<T>::ArrayType& dict,
|
||||
const ArraySpan& array, int64_t offset, int64_t length) {
|
||||
const c_type* values = array.GetValues<c_type>(1) + offset;
|
||||
return VisitBitBlocks(
|
||||
array.buffers[0].data, array.offset + offset, length,
|
||||
[&](const int64_t position) {
|
||||
const int64_t index = static_cast<int64_t>(values[position]);
|
||||
if (dict.IsValid(index)) {
|
||||
return Append(dict.GetView(index));
|
||||
}
|
||||
return AppendNull();
|
||||
},
|
||||
[&]() { return AppendNull(); });
|
||||
}
|
||||
|
||||
template <typename IndexType>
|
||||
Status AppendScalarImpl(const typename TypeTraits<T>::ArrayType& dict,
|
||||
const Scalar& index_scalar, int64_t n_repeats) {
|
||||
using ScalarType = typename TypeTraits<IndexType>::ScalarType;
|
||||
const auto index = internal::checked_cast<const ScalarType&>(index_scalar).value;
|
||||
if (index_scalar.is_valid && dict.IsValid(index)) {
|
||||
const auto& value = dict.GetView(index);
|
||||
for (int64_t i = 0; i < n_repeats; i++) {
|
||||
ARROW_RETURN_NOT_OK(Append(value));
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
return AppendNulls(n_repeats);
|
||||
}
|
||||
|
||||
Status FinishInternal(std::shared_ptr<ArrayData>* out) override {
|
||||
std::shared_ptr<ArrayData> dictionary;
|
||||
ARROW_RETURN_NOT_OK(FinishWithDictOffset(/*offset=*/0, out, &dictionary));
|
||||
|
||||
// Set type of array data to the right dictionary type
|
||||
(*out)->type = type();
|
||||
(*out)->dictionary = dictionary;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status FinishWithDictOffset(int64_t dict_offset,
|
||||
std::shared_ptr<ArrayData>* out_indices,
|
||||
std::shared_ptr<ArrayData>* out_dictionary) {
|
||||
// Finalize indices array
|
||||
ARROW_RETURN_NOT_OK(indices_builder_.FinishInternal(out_indices));
|
||||
|
||||
// Generate dictionary array from hash table contents
|
||||
ARROW_RETURN_NOT_OK(memo_table_->GetArrayData(dict_offset, out_dictionary));
|
||||
delta_offset_ = memo_table_->size();
|
||||
|
||||
// Update internals for further uses of this DictionaryBuilder
|
||||
ArrayBuilder::Reset();
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
std::unique_ptr<DictionaryMemoTable> memo_table_;
|
||||
|
||||
// The size of the dictionary memo at last invocation of Finish, to use in
|
||||
// FinishDelta for computing dictionary deltas
|
||||
int32_t delta_offset_;
|
||||
|
||||
// Only used for FixedSizeBinaryType
|
||||
int32_t byte_width_;
|
||||
|
||||
BuilderType indices_builder_;
|
||||
std::shared_ptr<DataType> value_type_;
|
||||
};
|
||||
|
||||
template <typename BuilderType>
|
||||
class DictionaryBuilderBase<BuilderType, NullType> : public ArrayBuilder {
|
||||
public:
|
||||
template <typename B = BuilderType>
|
||||
DictionaryBuilderBase(
|
||||
enable_if_t<std::is_base_of<AdaptiveIntBuilderBase, B>::value, uint8_t>
|
||||
start_int_size,
|
||||
const std::shared_ptr<DataType>& value_type,
|
||||
MemoryPool* pool = default_memory_pool())
|
||||
: ArrayBuilder(pool), indices_builder_(start_int_size, pool) {}
|
||||
|
||||
explicit DictionaryBuilderBase(const std::shared_ptr<DataType>& value_type,
|
||||
MemoryPool* pool = default_memory_pool())
|
||||
: ArrayBuilder(pool), indices_builder_(pool) {}
|
||||
|
||||
explicit DictionaryBuilderBase(const std::shared_ptr<DataType>& index_type,
|
||||
const std::shared_ptr<DataType>& value_type,
|
||||
MemoryPool* pool = default_memory_pool())
|
||||
: ArrayBuilder(pool), indices_builder_(index_type, pool) {}
|
||||
|
||||
template <typename B = BuilderType>
|
||||
explicit DictionaryBuilderBase(
|
||||
enable_if_t<std::is_base_of<AdaptiveIntBuilderBase, B>::value, uint8_t>
|
||||
start_int_size,
|
||||
MemoryPool* pool = default_memory_pool())
|
||||
: ArrayBuilder(pool), indices_builder_(start_int_size, pool) {}
|
||||
|
||||
explicit DictionaryBuilderBase(MemoryPool* pool = default_memory_pool())
|
||||
: ArrayBuilder(pool), indices_builder_(pool) {}
|
||||
|
||||
explicit DictionaryBuilderBase(const std::shared_ptr<Array>& dictionary,
|
||||
MemoryPool* pool = default_memory_pool())
|
||||
: ArrayBuilder(pool), indices_builder_(pool) {}
|
||||
|
||||
/// \brief Append a scalar null value
|
||||
Status AppendNull() final {
|
||||
length_ += 1;
|
||||
null_count_ += 1;
|
||||
|
||||
return indices_builder_.AppendNull();
|
||||
}
|
||||
|
||||
Status AppendNulls(int64_t length) final {
|
||||
length_ += length;
|
||||
null_count_ += length;
|
||||
|
||||
return indices_builder_.AppendNulls(length);
|
||||
}
|
||||
|
||||
Status AppendEmptyValue() final {
|
||||
length_ += 1;
|
||||
|
||||
return indices_builder_.AppendEmptyValue();
|
||||
}
|
||||
|
||||
Status AppendEmptyValues(int64_t length) final {
|
||||
length_ += length;
|
||||
|
||||
return indices_builder_.AppendEmptyValues(length);
|
||||
}
|
||||
|
||||
/// \brief Append a whole dense array to the builder
|
||||
Status AppendArray(const Array& array) {
|
||||
#ifndef NDEBUG
|
||||
ARROW_RETURN_NOT_OK(ArrayBuilder::CheckArrayType(
|
||||
Type::NA, array, "Wrong value type of array to be appended"));
|
||||
#endif
|
||||
for (int64_t i = 0; i < array.length(); i++) {
|
||||
ARROW_RETURN_NOT_OK(AppendNull());
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status Resize(int64_t capacity) override {
|
||||
ARROW_RETURN_NOT_OK(CheckCapacity(capacity));
|
||||
capacity = std::max(capacity, kMinBuilderCapacity);
|
||||
|
||||
ARROW_RETURN_NOT_OK(indices_builder_.Resize(capacity));
|
||||
capacity_ = indices_builder_.capacity();
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status FinishInternal(std::shared_ptr<ArrayData>* out) override {
|
||||
ARROW_RETURN_NOT_OK(indices_builder_.FinishInternal(out));
|
||||
(*out)->type = dictionary((*out)->type, null());
|
||||
(*out)->dictionary = NullArray(0).data();
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \cond FALSE
|
||||
using ArrayBuilder::Finish;
|
||||
/// \endcond
|
||||
|
||||
Status Finish(std::shared_ptr<DictionaryArray>* out) { return FinishTyped(out); }
|
||||
|
||||
std::shared_ptr<DataType> type() const override {
|
||||
return ::arrow::dictionary(indices_builder_.type(), null());
|
||||
}
|
||||
|
||||
protected:
|
||||
BuilderType indices_builder_;
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
/// \brief A DictionaryArray builder that uses AdaptiveIntBuilder to return the
|
||||
/// smallest index size that can accommodate the dictionary indices
|
||||
template <typename T>
|
||||
class DictionaryBuilder : public internal::DictionaryBuilderBase<AdaptiveIntBuilder, T> {
|
||||
public:
|
||||
using BASE = internal::DictionaryBuilderBase<AdaptiveIntBuilder, T>;
|
||||
using BASE::BASE;
|
||||
|
||||
/// \brief Append dictionary indices directly without modifying memo
|
||||
///
|
||||
/// NOTE: Experimental API
|
||||
Status AppendIndices(const int64_t* values, int64_t length,
|
||||
const uint8_t* valid_bytes = NULLPTR) {
|
||||
int64_t null_count_before = this->indices_builder_.null_count();
|
||||
ARROW_RETURN_NOT_OK(this->indices_builder_.AppendValues(values, length, valid_bytes));
|
||||
this->capacity_ = this->indices_builder_.capacity();
|
||||
this->length_ += length;
|
||||
this->null_count_ += this->indices_builder_.null_count() - null_count_before;
|
||||
return Status::OK();
|
||||
}
|
||||
};
|
||||
|
||||
/// \brief A DictionaryArray builder that always returns int32 dictionary
|
||||
/// indices so that data cast to dictionary form will have a consistent index
|
||||
/// type, e.g. for creating a ChunkedArray
|
||||
template <typename T>
|
||||
class Dictionary32Builder : public internal::DictionaryBuilderBase<Int32Builder, T> {
|
||||
public:
|
||||
using BASE = internal::DictionaryBuilderBase<Int32Builder, T>;
|
||||
using BASE::BASE;
|
||||
|
||||
/// \brief Append dictionary indices directly without modifying memo
|
||||
///
|
||||
/// NOTE: Experimental API
|
||||
Status AppendIndices(const int32_t* values, int64_t length,
|
||||
const uint8_t* valid_bytes = NULLPTR) {
|
||||
int64_t null_count_before = this->indices_builder_.null_count();
|
||||
ARROW_RETURN_NOT_OK(this->indices_builder_.AppendValues(values, length, valid_bytes));
|
||||
this->capacity_ = this->indices_builder_.capacity();
|
||||
this->length_ += length;
|
||||
this->null_count_ += this->indices_builder_.null_count() - null_count_before;
|
||||
return Status::OK();
|
||||
}
|
||||
};
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// Binary / Unicode builders
|
||||
// (compatibility aliases; those used to be derived classes with additional
|
||||
// Append() overloads, but they have been folded into DictionaryBuilderBase)
|
||||
|
||||
using BinaryDictionaryBuilder = DictionaryBuilder<BinaryType>;
|
||||
using StringDictionaryBuilder = DictionaryBuilder<StringType>;
|
||||
using BinaryDictionary32Builder = Dictionary32Builder<BinaryType>;
|
||||
using StringDictionary32Builder = Dictionary32Builder<StringType>;
|
||||
|
||||
/// @}
|
||||
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,565 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <limits>
|
||||
#include <memory>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/array/array_nested.h"
|
||||
#include "arrow/array/builder_base.h"
|
||||
#include "arrow/array/data.h"
|
||||
#include "arrow/buffer.h"
|
||||
#include "arrow/buffer_builder.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/type.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
/// \addtogroup nested-builders
|
||||
///
|
||||
/// @{
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// List builder
|
||||
|
||||
template <typename TYPE>
|
||||
class BaseListBuilder : public ArrayBuilder {
|
||||
public:
|
||||
using TypeClass = TYPE;
|
||||
using offset_type = typename TypeClass::offset_type;
|
||||
|
||||
/// Use this constructor to incrementally build the value array along with offsets and
|
||||
/// null bitmap.
|
||||
BaseListBuilder(MemoryPool* pool, std::shared_ptr<ArrayBuilder> const& value_builder,
|
||||
const std::shared_ptr<DataType>& type,
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: ArrayBuilder(pool, alignment),
|
||||
offsets_builder_(pool, alignment),
|
||||
value_builder_(value_builder),
|
||||
value_field_(type->field(0)->WithType(NULLPTR)) {}
|
||||
|
||||
BaseListBuilder(MemoryPool* pool, std::shared_ptr<ArrayBuilder> const& value_builder,
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: BaseListBuilder(pool, value_builder, list(value_builder->type()), alignment) {}
|
||||
|
||||
Status Resize(int64_t capacity) override {
|
||||
if (capacity > maximum_elements()) {
|
||||
return Status::CapacityError("List array cannot reserve space for more than ",
|
||||
maximum_elements(), " got ", capacity);
|
||||
}
|
||||
ARROW_RETURN_NOT_OK(CheckCapacity(capacity));
|
||||
|
||||
// One more than requested for offsets
|
||||
ARROW_RETURN_NOT_OK(offsets_builder_.Resize(capacity + 1));
|
||||
return ArrayBuilder::Resize(capacity);
|
||||
}
|
||||
|
||||
void Reset() override {
|
||||
ArrayBuilder::Reset();
|
||||
offsets_builder_.Reset();
|
||||
value_builder_->Reset();
|
||||
}
|
||||
|
||||
/// \brief Vector append
|
||||
///
|
||||
/// If passed, valid_bytes is of equal length to values, and any zero byte
|
||||
/// will be considered as a null for that slot
|
||||
Status AppendValues(const offset_type* offsets, int64_t length,
|
||||
const uint8_t* valid_bytes = NULLPTR) {
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
UnsafeAppendToBitmap(valid_bytes, length);
|
||||
offsets_builder_.UnsafeAppend(offsets, length);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \brief Start a new variable-length list slot
|
||||
///
|
||||
/// This function should be called before beginning to append elements to the
|
||||
/// value builder
|
||||
Status Append(bool is_valid = true) {
|
||||
ARROW_RETURN_NOT_OK(Reserve(1));
|
||||
UnsafeAppendToBitmap(is_valid);
|
||||
return AppendNextOffset();
|
||||
}
|
||||
|
||||
Status AppendNull() final { return Append(false); }
|
||||
|
||||
Status AppendNulls(int64_t length) final {
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
ARROW_RETURN_NOT_OK(ValidateOverflow(0));
|
||||
UnsafeAppendToBitmap(length, false);
|
||||
const int64_t num_values = value_builder_->length();
|
||||
for (int64_t i = 0; i < length; ++i) {
|
||||
offsets_builder_.UnsafeAppend(static_cast<offset_type>(num_values));
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AppendEmptyValue() final { return Append(true); }
|
||||
|
||||
Status AppendEmptyValues(int64_t length) final {
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
ARROW_RETURN_NOT_OK(ValidateOverflow(0));
|
||||
UnsafeAppendToBitmap(length, true);
|
||||
const int64_t num_values = value_builder_->length();
|
||||
for (int64_t i = 0; i < length; ++i) {
|
||||
offsets_builder_.UnsafeAppend(static_cast<offset_type>(num_values));
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AppendArraySlice(const ArraySpan& array, int64_t offset,
|
||||
int64_t length) override {
|
||||
const offset_type* offsets = array.GetValues<offset_type>(1);
|
||||
const uint8_t* validity = array.MayHaveNulls() ? array.buffers[0].data : NULLPTR;
|
||||
for (int64_t row = offset; row < offset + length; row++) {
|
||||
if (!validity || bit_util::GetBit(validity, array.offset + row)) {
|
||||
ARROW_RETURN_NOT_OK(Append());
|
||||
int64_t slot_length = offsets[row + 1] - offsets[row];
|
||||
ARROW_RETURN_NOT_OK(value_builder_->AppendArraySlice(array.child_data[0],
|
||||
offsets[row], slot_length));
|
||||
} else {
|
||||
ARROW_RETURN_NOT_OK(AppendNull());
|
||||
}
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status FinishInternal(std::shared_ptr<ArrayData>* out) override {
|
||||
ARROW_RETURN_NOT_OK(AppendNextOffset());
|
||||
|
||||
// Offset padding zeroed by BufferBuilder
|
||||
std::shared_ptr<Buffer> offsets, null_bitmap;
|
||||
ARROW_RETURN_NOT_OK(offsets_builder_.Finish(&offsets));
|
||||
ARROW_RETURN_NOT_OK(null_bitmap_builder_.Finish(&null_bitmap));
|
||||
|
||||
if (value_builder_->length() == 0) {
|
||||
// Try to make sure we get a non-null values buffer (ARROW-2744)
|
||||
ARROW_RETURN_NOT_OK(value_builder_->Resize(0));
|
||||
}
|
||||
|
||||
std::shared_ptr<ArrayData> items;
|
||||
ARROW_RETURN_NOT_OK(value_builder_->FinishInternal(&items));
|
||||
|
||||
*out = ArrayData::Make(type(), length_, {null_bitmap, offsets}, {std::move(items)},
|
||||
null_count_);
|
||||
Reset();
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status ValidateOverflow(int64_t new_elements) const {
|
||||
auto new_length = value_builder_->length() + new_elements;
|
||||
if (ARROW_PREDICT_FALSE(new_length > maximum_elements())) {
|
||||
return Status::CapacityError("List array cannot contain more than ",
|
||||
maximum_elements(), " elements, have ", new_elements);
|
||||
} else {
|
||||
return Status::OK();
|
||||
}
|
||||
}
|
||||
|
||||
ArrayBuilder* value_builder() const { return value_builder_.get(); }
|
||||
|
||||
// Cannot make this a static attribute because of linking issues
|
||||
static constexpr int64_t maximum_elements() {
|
||||
return std::numeric_limits<offset_type>::max() - 1;
|
||||
}
|
||||
|
||||
std::shared_ptr<DataType> type() const override {
|
||||
return std::make_shared<TYPE>(value_field_->WithType(value_builder_->type()));
|
||||
}
|
||||
|
||||
protected:
|
||||
TypedBufferBuilder<offset_type> offsets_builder_;
|
||||
std::shared_ptr<ArrayBuilder> value_builder_;
|
||||
std::shared_ptr<Field> value_field_;
|
||||
|
||||
Status AppendNextOffset() {
|
||||
ARROW_RETURN_NOT_OK(ValidateOverflow(0));
|
||||
const int64_t num_values = value_builder_->length();
|
||||
return offsets_builder_.Append(static_cast<offset_type>(num_values));
|
||||
}
|
||||
};
|
||||
|
||||
/// \class ListBuilder
|
||||
/// \brief Builder class for variable-length list array value types
|
||||
///
|
||||
/// To use this class, you must append values to the child array builder and use
|
||||
/// the Append function to delimit each distinct list value (once the values
|
||||
/// have been appended to the child array) or use the bulk API to append
|
||||
/// a sequence of offsets and null values.
|
||||
///
|
||||
/// A note on types. Per arrow/type.h all types in the c++ implementation are
|
||||
/// logical so even though this class always builds list array, this can
|
||||
/// represent multiple different logical types. If no logical type is provided
|
||||
/// at construction time, the class defaults to List<T> where t is taken from the
|
||||
/// value_builder/values that the object is constructed with.
|
||||
class ARROW_EXPORT ListBuilder : public BaseListBuilder<ListType> {
|
||||
public:
|
||||
using BaseListBuilder::BaseListBuilder;
|
||||
|
||||
/// \cond FALSE
|
||||
using ArrayBuilder::Finish;
|
||||
/// \endcond
|
||||
|
||||
Status Finish(std::shared_ptr<ListArray>* out) { return FinishTyped(out); }
|
||||
};
|
||||
|
||||
/// \class LargeListBuilder
|
||||
/// \brief Builder class for large variable-length list array value types
|
||||
///
|
||||
/// Like ListBuilder, but to create large list arrays (with 64-bit offsets).
|
||||
class ARROW_EXPORT LargeListBuilder : public BaseListBuilder<LargeListType> {
|
||||
public:
|
||||
using BaseListBuilder::BaseListBuilder;
|
||||
|
||||
/// \cond FALSE
|
||||
using ArrayBuilder::Finish;
|
||||
/// \endcond
|
||||
|
||||
Status Finish(std::shared_ptr<LargeListArray>* out) { return FinishTyped(out); }
|
||||
};
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// Map builder
|
||||
|
||||
/// \class MapBuilder
|
||||
/// \brief Builder class for arrays of variable-size maps
|
||||
///
|
||||
/// To use this class, you must append values to the key and item array builders
|
||||
/// and use the Append function to delimit each distinct map (once the keys and items
|
||||
/// have been appended) or use the bulk API to append a sequence of offsets and null
|
||||
/// maps.
|
||||
///
|
||||
/// Key uniqueness and ordering are not validated.
|
||||
class ARROW_EXPORT MapBuilder : public ArrayBuilder {
|
||||
public:
|
||||
/// Use this constructor to define the built array's type explicitly. If key_builder
|
||||
/// or item_builder has indeterminate type, this builder will also.
|
||||
MapBuilder(MemoryPool* pool, const std::shared_ptr<ArrayBuilder>& key_builder,
|
||||
const std::shared_ptr<ArrayBuilder>& item_builder,
|
||||
const std::shared_ptr<DataType>& type);
|
||||
|
||||
/// Use this constructor to infer the built array's type. If key_builder or
|
||||
/// item_builder has indeterminate type, this builder will also.
|
||||
MapBuilder(MemoryPool* pool, const std::shared_ptr<ArrayBuilder>& key_builder,
|
||||
const std::shared_ptr<ArrayBuilder>& item_builder, bool keys_sorted = false);
|
||||
|
||||
MapBuilder(MemoryPool* pool, const std::shared_ptr<ArrayBuilder>& item_builder,
|
||||
const std::shared_ptr<DataType>& type);
|
||||
|
||||
Status Resize(int64_t capacity) override;
|
||||
void Reset() override;
|
||||
Status FinishInternal(std::shared_ptr<ArrayData>* out) override;
|
||||
|
||||
/// \cond FALSE
|
||||
using ArrayBuilder::Finish;
|
||||
/// \endcond
|
||||
|
||||
Status Finish(std::shared_ptr<MapArray>* out) { return FinishTyped(out); }
|
||||
|
||||
/// \brief Vector append
|
||||
///
|
||||
/// If passed, valid_bytes is of equal length to values, and any zero byte
|
||||
/// will be considered as a null for that slot
|
||||
Status AppendValues(const int32_t* offsets, int64_t length,
|
||||
const uint8_t* valid_bytes = NULLPTR);
|
||||
|
||||
/// \brief Start a new variable-length map slot
|
||||
///
|
||||
/// This function should be called before beginning to append elements to the
|
||||
/// key and item builders
|
||||
Status Append();
|
||||
|
||||
Status AppendNull() final;
|
||||
|
||||
Status AppendNulls(int64_t length) final;
|
||||
|
||||
Status AppendEmptyValue() final;
|
||||
|
||||
Status AppendEmptyValues(int64_t length) final;
|
||||
|
||||
Status AppendArraySlice(const ArraySpan& array, int64_t offset,
|
||||
int64_t length) override {
|
||||
const int32_t* offsets = array.GetValues<int32_t>(1);
|
||||
const uint8_t* validity = array.MayHaveNulls() ? array.buffers[0].data : NULLPTR;
|
||||
for (int64_t row = offset; row < offset + length; row++) {
|
||||
if (!validity || bit_util::GetBit(validity, array.offset + row)) {
|
||||
ARROW_RETURN_NOT_OK(Append());
|
||||
const int64_t slot_length = offsets[row + 1] - offsets[row];
|
||||
// Add together the inner StructArray offset to the Map/List offset
|
||||
int64_t key_value_offset = array.child_data[0].offset + offsets[row];
|
||||
ARROW_RETURN_NOT_OK(key_builder_->AppendArraySlice(
|
||||
array.child_data[0].child_data[0], key_value_offset, slot_length));
|
||||
ARROW_RETURN_NOT_OK(item_builder_->AppendArraySlice(
|
||||
array.child_data[0].child_data[1], key_value_offset, slot_length));
|
||||
} else {
|
||||
ARROW_RETURN_NOT_OK(AppendNull());
|
||||
}
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \brief Get builder to append keys.
|
||||
///
|
||||
/// Append a key with this builder should be followed by appending
|
||||
/// an item or null value with item_builder().
|
||||
ArrayBuilder* key_builder() const { return key_builder_.get(); }
|
||||
|
||||
/// \brief Get builder to append items
|
||||
///
|
||||
/// Appending an item with this builder should have been preceded
|
||||
/// by appending a key with key_builder().
|
||||
ArrayBuilder* item_builder() const { return item_builder_.get(); }
|
||||
|
||||
/// \brief Get builder to add Map entries as struct values.
|
||||
///
|
||||
/// This is used instead of key_builder()/item_builder() and allows
|
||||
/// the Map to be built as a list of struct values.
|
||||
ArrayBuilder* value_builder() const { return list_builder_->value_builder(); }
|
||||
|
||||
std::shared_ptr<DataType> type() const override {
|
||||
// Key and Item builder may update types, but they don't contain the field names,
|
||||
// so we need to reconstruct the type. (See ARROW-13735.)
|
||||
return std::make_shared<MapType>(
|
||||
field(entries_name_,
|
||||
struct_({field(key_name_, key_builder_->type(), false),
|
||||
field(item_name_, item_builder_->type(), item_nullable_)}),
|
||||
false),
|
||||
keys_sorted_);
|
||||
}
|
||||
|
||||
Status ValidateOverflow(int64_t new_elements) {
|
||||
return list_builder_->ValidateOverflow(new_elements);
|
||||
}
|
||||
|
||||
protected:
|
||||
inline Status AdjustStructBuilderLength();
|
||||
|
||||
protected:
|
||||
bool keys_sorted_ = false;
|
||||
bool item_nullable_ = false;
|
||||
std::string entries_name_;
|
||||
std::string key_name_;
|
||||
std::string item_name_;
|
||||
std::shared_ptr<ListBuilder> list_builder_;
|
||||
std::shared_ptr<ArrayBuilder> key_builder_;
|
||||
std::shared_ptr<ArrayBuilder> item_builder_;
|
||||
};
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// FixedSizeList builder
|
||||
|
||||
/// \class FixedSizeListBuilder
|
||||
/// \brief Builder class for fixed-length list array value types
|
||||
class ARROW_EXPORT FixedSizeListBuilder : public ArrayBuilder {
|
||||
public:
|
||||
/// Use this constructor to define the built array's type explicitly. If value_builder
|
||||
/// has indeterminate type, this builder will also.
|
||||
FixedSizeListBuilder(MemoryPool* pool,
|
||||
std::shared_ptr<ArrayBuilder> const& value_builder,
|
||||
int32_t list_size);
|
||||
|
||||
/// Use this constructor to infer the built array's type. If value_builder has
|
||||
/// indeterminate type, this builder will also.
|
||||
FixedSizeListBuilder(MemoryPool* pool,
|
||||
std::shared_ptr<ArrayBuilder> const& value_builder,
|
||||
const std::shared_ptr<DataType>& type);
|
||||
|
||||
Status Resize(int64_t capacity) override;
|
||||
void Reset() override;
|
||||
Status FinishInternal(std::shared_ptr<ArrayData>* out) override;
|
||||
|
||||
/// \cond FALSE
|
||||
using ArrayBuilder::Finish;
|
||||
/// \endcond
|
||||
|
||||
Status Finish(std::shared_ptr<FixedSizeListArray>* out) { return FinishTyped(out); }
|
||||
|
||||
/// \brief Append a valid fixed length list.
|
||||
///
|
||||
/// This function affects only the validity bitmap; the child values must be appended
|
||||
/// using the child array builder.
|
||||
Status Append();
|
||||
|
||||
/// \brief Vector append
|
||||
///
|
||||
/// If passed, valid_bytes wil be read and any zero byte
|
||||
/// will cause the corresponding slot to be null
|
||||
///
|
||||
/// This function affects only the validity bitmap; the child values must be appended
|
||||
/// using the child array builder. This includes appending nulls for null lists.
|
||||
/// XXX this restriction is confusing, should this method be omitted?
|
||||
Status AppendValues(int64_t length, const uint8_t* valid_bytes = NULLPTR);
|
||||
|
||||
/// \brief Append a null fixed length list.
|
||||
///
|
||||
/// The child array builder will have the appropriate number of nulls appended
|
||||
/// automatically.
|
||||
Status AppendNull() final;
|
||||
|
||||
/// \brief Append length null fixed length lists.
|
||||
///
|
||||
/// The child array builder will have the appropriate number of nulls appended
|
||||
/// automatically.
|
||||
Status AppendNulls(int64_t length) final;
|
||||
|
||||
Status ValidateOverflow(int64_t new_elements);
|
||||
|
||||
Status AppendEmptyValue() final;
|
||||
|
||||
Status AppendEmptyValues(int64_t length) final;
|
||||
|
||||
Status AppendArraySlice(const ArraySpan& array, int64_t offset, int64_t length) final {
|
||||
const uint8_t* validity = array.MayHaveNulls() ? array.buffers[0].data : NULLPTR;
|
||||
for (int64_t row = offset; row < offset + length; row++) {
|
||||
if (!validity || bit_util::GetBit(validity, array.offset + row)) {
|
||||
ARROW_RETURN_NOT_OK(value_builder_->AppendArraySlice(
|
||||
array.child_data[0], list_size_ * (array.offset + row), list_size_));
|
||||
ARROW_RETURN_NOT_OK(Append());
|
||||
} else {
|
||||
ARROW_RETURN_NOT_OK(AppendNull());
|
||||
}
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
ArrayBuilder* value_builder() const { return value_builder_.get(); }
|
||||
|
||||
std::shared_ptr<DataType> type() const override {
|
||||
return fixed_size_list(value_field_->WithType(value_builder_->type()), list_size_);
|
||||
}
|
||||
|
||||
// Cannot make this a static attribute because of linking issues
|
||||
static constexpr int64_t maximum_elements() {
|
||||
return std::numeric_limits<FixedSizeListType::offset_type>::max() - 1;
|
||||
}
|
||||
|
||||
protected:
|
||||
std::shared_ptr<Field> value_field_;
|
||||
const int32_t list_size_;
|
||||
std::shared_ptr<ArrayBuilder> value_builder_;
|
||||
};
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// Struct
|
||||
|
||||
// ---------------------------------------------------------------------------------
|
||||
// StructArray builder
|
||||
/// Append, Resize and Reserve methods are acting on StructBuilder.
|
||||
/// Please make sure all these methods of all child-builders' are consistently
|
||||
/// called to maintain data-structure consistency.
|
||||
class ARROW_EXPORT StructBuilder : public ArrayBuilder {
|
||||
public:
|
||||
/// If any of field_builders has indeterminate type, this builder will also
|
||||
StructBuilder(const std::shared_ptr<DataType>& type, MemoryPool* pool,
|
||||
std::vector<std::shared_ptr<ArrayBuilder>> field_builders);
|
||||
|
||||
Status FinishInternal(std::shared_ptr<ArrayData>* out) override;
|
||||
|
||||
/// \cond FALSE
|
||||
using ArrayBuilder::Finish;
|
||||
/// \endcond
|
||||
|
||||
Status Finish(std::shared_ptr<StructArray>* out) { return FinishTyped(out); }
|
||||
|
||||
/// Null bitmap is of equal length to every child field, and any zero byte
|
||||
/// will be considered as a null for that field, but users must using app-
|
||||
/// end methods or advance methods of the child builders' independently to
|
||||
/// insert data.
|
||||
Status AppendValues(int64_t length, const uint8_t* valid_bytes) {
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
UnsafeAppendToBitmap(valid_bytes, length);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// Append an element to the Struct. All child-builders' Append method must
|
||||
/// be called independently to maintain data-structure consistency.
|
||||
Status Append(bool is_valid = true) {
|
||||
ARROW_RETURN_NOT_OK(Reserve(1));
|
||||
UnsafeAppendToBitmap(is_valid);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \brief Append a null value. Automatically appends an empty value to each child
|
||||
/// builder.
|
||||
Status AppendNull() final {
|
||||
for (const auto& field : children_) {
|
||||
ARROW_RETURN_NOT_OK(field->AppendEmptyValue());
|
||||
}
|
||||
return Append(false);
|
||||
}
|
||||
|
||||
/// \brief Append multiple null values. Automatically appends empty values to each
|
||||
/// child builder.
|
||||
Status AppendNulls(int64_t length) final {
|
||||
for (const auto& field : children_) {
|
||||
ARROW_RETURN_NOT_OK(field->AppendEmptyValues(length));
|
||||
}
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
UnsafeAppendToBitmap(length, false);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AppendEmptyValue() final {
|
||||
for (const auto& field : children_) {
|
||||
ARROW_RETURN_NOT_OK(field->AppendEmptyValue());
|
||||
}
|
||||
return Append(true);
|
||||
}
|
||||
|
||||
Status AppendEmptyValues(int64_t length) final {
|
||||
for (const auto& field : children_) {
|
||||
ARROW_RETURN_NOT_OK(field->AppendEmptyValues(length));
|
||||
}
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
UnsafeAppendToBitmap(length, true);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AppendArraySlice(const ArraySpan& array, int64_t offset,
|
||||
int64_t length) override {
|
||||
for (int i = 0; static_cast<size_t>(i) < children_.size(); i++) {
|
||||
ARROW_RETURN_NOT_OK(children_[i]->AppendArraySlice(array.child_data[i],
|
||||
array.offset + offset, length));
|
||||
}
|
||||
const uint8_t* validity = array.MayHaveNulls() ? array.buffers[0].data : NULLPTR;
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
UnsafeAppendToBitmap(validity, array.offset + offset, length);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
void Reset() override;
|
||||
|
||||
ArrayBuilder* field_builder(int i) const { return children_[i].get(); }
|
||||
|
||||
int num_fields() const { return static_cast<int>(children_.size()); }
|
||||
|
||||
std::shared_ptr<DataType> type() const override;
|
||||
|
||||
private:
|
||||
std::shared_ptr<DataType> type_;
|
||||
};
|
||||
|
||||
/// @}
|
||||
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,551 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/array/builder_base.h"
|
||||
#include "arrow/array/data.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/type.h"
|
||||
#include "arrow/type_traits.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
class ARROW_EXPORT NullBuilder : public ArrayBuilder {
|
||||
public:
|
||||
explicit NullBuilder(MemoryPool* pool = default_memory_pool(),
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: ArrayBuilder(pool) {}
|
||||
explicit NullBuilder(const std::shared_ptr<DataType>& type,
|
||||
MemoryPool* pool = default_memory_pool(),
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: NullBuilder(pool, alignment) {}
|
||||
|
||||
/// \brief Append the specified number of null elements
|
||||
Status AppendNulls(int64_t length) final {
|
||||
if (length < 0) return Status::Invalid("length must be positive");
|
||||
null_count_ += length;
|
||||
length_ += length;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \brief Append a single null element
|
||||
Status AppendNull() final { return AppendNulls(1); }
|
||||
|
||||
Status AppendEmptyValues(int64_t length) final { return AppendNulls(length); }
|
||||
|
||||
Status AppendEmptyValue() final { return AppendEmptyValues(1); }
|
||||
|
||||
Status Append(std::nullptr_t) { return AppendNull(); }
|
||||
|
||||
Status AppendArraySlice(const ArraySpan&, int64_t, int64_t length) override {
|
||||
return AppendNulls(length);
|
||||
}
|
||||
|
||||
Status FinishInternal(std::shared_ptr<ArrayData>* out) override;
|
||||
|
||||
/// \cond FALSE
|
||||
using ArrayBuilder::Finish;
|
||||
/// \endcond
|
||||
|
||||
std::shared_ptr<DataType> type() const override { return null(); }
|
||||
|
||||
Status Finish(std::shared_ptr<NullArray>* out) { return FinishTyped(out); }
|
||||
};
|
||||
|
||||
/// \addtogroup numeric-builders
|
||||
///
|
||||
/// @{
|
||||
|
||||
/// Base class for all Builders that emit an Array of a scalar numerical type.
|
||||
template <typename T>
|
||||
class NumericBuilder : public ArrayBuilder {
|
||||
public:
|
||||
using TypeClass = T;
|
||||
using value_type = typename T::c_type;
|
||||
using ArrayType = typename TypeTraits<T>::ArrayType;
|
||||
|
||||
template <typename T1 = T>
|
||||
explicit NumericBuilder(
|
||||
enable_if_parameter_free<T1, MemoryPool*> pool = default_memory_pool(),
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: ArrayBuilder(pool, alignment),
|
||||
type_(TypeTraits<T>::type_singleton()),
|
||||
data_builder_(pool, alignment) {}
|
||||
|
||||
NumericBuilder(const std::shared_ptr<DataType>& type, MemoryPool* pool,
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: ArrayBuilder(pool, alignment), type_(type), data_builder_(pool, alignment) {}
|
||||
|
||||
/// Append a single scalar and increase the size if necessary.
|
||||
Status Append(const value_type val) {
|
||||
ARROW_RETURN_NOT_OK(ArrayBuilder::Reserve(1));
|
||||
UnsafeAppend(val);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// Write nulls as uint8_t* (0 value indicates null) into pre-allocated memory
|
||||
/// The memory at the corresponding data slot is set to 0 to prevent
|
||||
/// uninitialized memory access
|
||||
Status AppendNulls(int64_t length) final {
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
data_builder_.UnsafeAppend(length, value_type{}); // zero
|
||||
UnsafeSetNull(length);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \brief Append a single null element
|
||||
Status AppendNull() final {
|
||||
ARROW_RETURN_NOT_OK(Reserve(1));
|
||||
data_builder_.UnsafeAppend(value_type{}); // zero
|
||||
UnsafeAppendToBitmap(false);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \brief Append a empty element
|
||||
Status AppendEmptyValue() final {
|
||||
ARROW_RETURN_NOT_OK(Reserve(1));
|
||||
data_builder_.UnsafeAppend(value_type{}); // zero
|
||||
UnsafeAppendToBitmap(true);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \brief Append several empty elements
|
||||
Status AppendEmptyValues(int64_t length) final {
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
data_builder_.UnsafeAppend(length, value_type{}); // zero
|
||||
UnsafeSetNotNull(length);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
value_type GetValue(int64_t index) const { return data_builder_.data()[index]; }
|
||||
|
||||
void Reset() override {
|
||||
data_builder_.Reset();
|
||||
ArrayBuilder::Reset();
|
||||
}
|
||||
|
||||
Status Resize(int64_t capacity) override {
|
||||
ARROW_RETURN_NOT_OK(CheckCapacity(capacity));
|
||||
capacity = std::max(capacity, kMinBuilderCapacity);
|
||||
ARROW_RETURN_NOT_OK(data_builder_.Resize(capacity));
|
||||
return ArrayBuilder::Resize(capacity);
|
||||
}
|
||||
|
||||
value_type operator[](int64_t index) const { return GetValue(index); }
|
||||
|
||||
value_type& operator[](int64_t index) {
|
||||
return reinterpret_cast<value_type*>(data_builder_.mutable_data())[index];
|
||||
}
|
||||
|
||||
/// \brief Append a sequence of elements in one shot
|
||||
/// \param[in] values a contiguous C array of values
|
||||
/// \param[in] length the number of values to append
|
||||
/// \param[in] valid_bytes an optional sequence of bytes where non-zero
|
||||
/// indicates a valid (non-null) value
|
||||
/// \return Status
|
||||
Status AppendValues(const value_type* values, int64_t length,
|
||||
const uint8_t* valid_bytes = NULLPTR) {
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
data_builder_.UnsafeAppend(values, length);
|
||||
// length_ is update by these
|
||||
ArrayBuilder::UnsafeAppendToBitmap(valid_bytes, length);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \brief Append a sequence of elements in one shot
|
||||
/// \param[in] values a contiguous C array of values
|
||||
/// \param[in] length the number of values to append
|
||||
/// \param[in] bitmap a validity bitmap to copy (may be null)
|
||||
/// \param[in] bitmap_offset an offset into the validity bitmap
|
||||
/// \return Status
|
||||
Status AppendValues(const value_type* values, int64_t length, const uint8_t* bitmap,
|
||||
int64_t bitmap_offset) {
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
data_builder_.UnsafeAppend(values, length);
|
||||
// length_ is update by these
|
||||
ArrayBuilder::UnsafeAppendToBitmap(bitmap, bitmap_offset, length);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \brief Append a sequence of elements in one shot
|
||||
/// \param[in] values a contiguous C array of values
|
||||
/// \param[in] length the number of values to append
|
||||
/// \param[in] is_valid an std::vector<bool> indicating valid (1) or null
|
||||
/// (0). Equal in length to values
|
||||
/// \return Status
|
||||
Status AppendValues(const value_type* values, int64_t length,
|
||||
const std::vector<bool>& is_valid) {
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
data_builder_.UnsafeAppend(values, length);
|
||||
// length_ is update by these
|
||||
ArrayBuilder::UnsafeAppendToBitmap(is_valid);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \brief Append a sequence of elements in one shot
|
||||
/// \param[in] values a std::vector of values
|
||||
/// \param[in] is_valid an std::vector<bool> indicating valid (1) or null
|
||||
/// (0). Equal in length to values
|
||||
/// \return Status
|
||||
Status AppendValues(const std::vector<value_type>& values,
|
||||
const std::vector<bool>& is_valid) {
|
||||
return AppendValues(values.data(), static_cast<int64_t>(values.size()), is_valid);
|
||||
}
|
||||
|
||||
/// \brief Append a sequence of elements in one shot
|
||||
/// \param[in] values a std::vector of values
|
||||
/// \return Status
|
||||
Status AppendValues(const std::vector<value_type>& values) {
|
||||
return AppendValues(values.data(), static_cast<int64_t>(values.size()));
|
||||
}
|
||||
|
||||
Status FinishInternal(std::shared_ptr<ArrayData>* out) override {
|
||||
ARROW_ASSIGN_OR_RAISE(auto null_bitmap,
|
||||
null_bitmap_builder_.FinishWithLength(length_));
|
||||
ARROW_ASSIGN_OR_RAISE(auto data, data_builder_.FinishWithLength(length_));
|
||||
*out = ArrayData::Make(type(), length_, {null_bitmap, data}, null_count_);
|
||||
capacity_ = length_ = null_count_ = 0;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \cond FALSE
|
||||
using ArrayBuilder::Finish;
|
||||
/// \endcond
|
||||
|
||||
Status Finish(std::shared_ptr<ArrayType>* out) { return FinishTyped(out); }
|
||||
|
||||
/// \brief Append a sequence of elements in one shot
|
||||
/// \param[in] values_begin InputIterator to the beginning of the values
|
||||
/// \param[in] values_end InputIterator pointing to the end of the values
|
||||
/// \return Status
|
||||
template <typename ValuesIter>
|
||||
Status AppendValues(ValuesIter values_begin, ValuesIter values_end) {
|
||||
int64_t length = static_cast<int64_t>(std::distance(values_begin, values_end));
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
data_builder_.UnsafeAppend(values_begin, values_end);
|
||||
// this updates the length_
|
||||
UnsafeSetNotNull(length);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \brief Append a sequence of elements in one shot, with a specified nullmap
|
||||
/// \param[in] values_begin InputIterator to the beginning of the values
|
||||
/// \param[in] values_end InputIterator pointing to the end of the values
|
||||
/// \param[in] valid_begin InputIterator with elements indication valid(1)
|
||||
/// or null(0) values.
|
||||
/// \return Status
|
||||
template <typename ValuesIter, typename ValidIter>
|
||||
enable_if_t<!std::is_pointer<ValidIter>::value, Status> AppendValues(
|
||||
ValuesIter values_begin, ValuesIter values_end, ValidIter valid_begin) {
|
||||
static_assert(!internal::is_null_pointer<ValidIter>::value,
|
||||
"Don't pass a NULLPTR directly as valid_begin, use the 2-argument "
|
||||
"version instead");
|
||||
int64_t length = static_cast<int64_t>(std::distance(values_begin, values_end));
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
data_builder_.UnsafeAppend(values_begin, values_end);
|
||||
null_bitmap_builder_.UnsafeAppend<true>(
|
||||
length, [&valid_begin]() -> bool { return *valid_begin++; });
|
||||
length_ = null_bitmap_builder_.length();
|
||||
null_count_ = null_bitmap_builder_.false_count();
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Same as above, with a pointer type ValidIter
|
||||
template <typename ValuesIter, typename ValidIter>
|
||||
enable_if_t<std::is_pointer<ValidIter>::value, Status> AppendValues(
|
||||
ValuesIter values_begin, ValuesIter values_end, ValidIter valid_begin) {
|
||||
int64_t length = static_cast<int64_t>(std::distance(values_begin, values_end));
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
data_builder_.UnsafeAppend(values_begin, values_end);
|
||||
// this updates the length_
|
||||
if (valid_begin == NULLPTR) {
|
||||
UnsafeSetNotNull(length);
|
||||
} else {
|
||||
null_bitmap_builder_.UnsafeAppend<true>(
|
||||
length, [&valid_begin]() -> bool { return *valid_begin++; });
|
||||
length_ = null_bitmap_builder_.length();
|
||||
null_count_ = null_bitmap_builder_.false_count();
|
||||
}
|
||||
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AppendArraySlice(const ArraySpan& array, int64_t offset,
|
||||
int64_t length) override {
|
||||
return AppendValues(array.GetValues<value_type>(1) + offset, length,
|
||||
array.GetValues<uint8_t>(0, 0), array.offset + offset);
|
||||
}
|
||||
|
||||
/// Append a single scalar under the assumption that the underlying Buffer is
|
||||
/// large enough.
|
||||
///
|
||||
/// This method does not capacity-check; make sure to call Reserve
|
||||
/// beforehand.
|
||||
void UnsafeAppend(const value_type val) {
|
||||
ArrayBuilder::UnsafeAppendToBitmap(true);
|
||||
data_builder_.UnsafeAppend(val);
|
||||
}
|
||||
|
||||
void UnsafeAppendNull() {
|
||||
ArrayBuilder::UnsafeAppendToBitmap(false);
|
||||
data_builder_.UnsafeAppend(value_type{}); // zero
|
||||
}
|
||||
|
||||
std::shared_ptr<DataType> type() const override { return type_; }
|
||||
|
||||
protected:
|
||||
std::shared_ptr<DataType> type_;
|
||||
TypedBufferBuilder<value_type> data_builder_;
|
||||
};
|
||||
|
||||
// Builders
|
||||
|
||||
using UInt8Builder = NumericBuilder<UInt8Type>;
|
||||
using UInt16Builder = NumericBuilder<UInt16Type>;
|
||||
using UInt32Builder = NumericBuilder<UInt32Type>;
|
||||
using UInt64Builder = NumericBuilder<UInt64Type>;
|
||||
|
||||
using Int8Builder = NumericBuilder<Int8Type>;
|
||||
using Int16Builder = NumericBuilder<Int16Type>;
|
||||
using Int32Builder = NumericBuilder<Int32Type>;
|
||||
using Int64Builder = NumericBuilder<Int64Type>;
|
||||
|
||||
using HalfFloatBuilder = NumericBuilder<HalfFloatType>;
|
||||
using FloatBuilder = NumericBuilder<FloatType>;
|
||||
using DoubleBuilder = NumericBuilder<DoubleType>;
|
||||
|
||||
/// @}
|
||||
|
||||
/// \addtogroup temporal-builders
|
||||
///
|
||||
/// @{
|
||||
|
||||
using Date32Builder = NumericBuilder<Date32Type>;
|
||||
using Date64Builder = NumericBuilder<Date64Type>;
|
||||
using Time32Builder = NumericBuilder<Time32Type>;
|
||||
using Time64Builder = NumericBuilder<Time64Type>;
|
||||
using TimestampBuilder = NumericBuilder<TimestampType>;
|
||||
using MonthIntervalBuilder = NumericBuilder<MonthIntervalType>;
|
||||
using DurationBuilder = NumericBuilder<DurationType>;
|
||||
|
||||
/// @}
|
||||
|
||||
class ARROW_EXPORT BooleanBuilder : public ArrayBuilder {
|
||||
public:
|
||||
using TypeClass = BooleanType;
|
||||
using value_type = bool;
|
||||
|
||||
explicit BooleanBuilder(MemoryPool* pool = default_memory_pool(),
|
||||
int64_t alignment = kDefaultBufferAlignment);
|
||||
|
||||
BooleanBuilder(const std::shared_ptr<DataType>& type,
|
||||
MemoryPool* pool = default_memory_pool(),
|
||||
int64_t alignment = kDefaultBufferAlignment);
|
||||
|
||||
/// Write nulls as uint8_t* (0 value indicates null) into pre-allocated memory
|
||||
Status AppendNulls(int64_t length) final {
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
data_builder_.UnsafeAppend(length, false);
|
||||
UnsafeSetNull(length);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AppendNull() final {
|
||||
ARROW_RETURN_NOT_OK(Reserve(1));
|
||||
UnsafeAppendNull();
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AppendEmptyValue() final {
|
||||
ARROW_RETURN_NOT_OK(Reserve(1));
|
||||
data_builder_.UnsafeAppend(false);
|
||||
UnsafeSetNotNull(1);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AppendEmptyValues(int64_t length) final {
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
data_builder_.UnsafeAppend(length, false);
|
||||
UnsafeSetNotNull(length);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// Scalar append
|
||||
Status Append(const bool val) {
|
||||
ARROW_RETURN_NOT_OK(Reserve(1));
|
||||
UnsafeAppend(val);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status Append(const uint8_t val) { return Append(val != 0); }
|
||||
|
||||
/// Scalar append, without checking for capacity
|
||||
void UnsafeAppend(const bool val) {
|
||||
data_builder_.UnsafeAppend(val);
|
||||
UnsafeAppendToBitmap(true);
|
||||
}
|
||||
|
||||
void UnsafeAppendNull() {
|
||||
data_builder_.UnsafeAppend(false);
|
||||
UnsafeAppendToBitmap(false);
|
||||
}
|
||||
|
||||
void UnsafeAppend(const uint8_t val) { UnsafeAppend(val != 0); }
|
||||
|
||||
/// \brief Append a sequence of elements in one shot
|
||||
/// \param[in] values a contiguous array of bytes (non-zero is 1)
|
||||
/// \param[in] length the number of values to append
|
||||
/// \param[in] valid_bytes an optional sequence of bytes where non-zero
|
||||
/// indicates a valid (non-null) value
|
||||
/// \return Status
|
||||
Status AppendValues(const uint8_t* values, int64_t length,
|
||||
const uint8_t* valid_bytes = NULLPTR);
|
||||
|
||||
/// \brief Append a sequence of elements in one shot
|
||||
/// \param[in] values a bitmap of values
|
||||
/// \param[in] length the number of values to append
|
||||
/// \param[in] validity a validity bitmap to copy (may be null)
|
||||
/// \param[in] offset an offset into the values and validity bitmaps
|
||||
/// \return Status
|
||||
Status AppendValues(const uint8_t* values, int64_t length, const uint8_t* validity,
|
||||
int64_t offset);
|
||||
|
||||
/// \brief Append a sequence of elements in one shot
|
||||
/// \param[in] values a contiguous C array of values
|
||||
/// \param[in] length the number of values to append
|
||||
/// \param[in] is_valid an std::vector<bool> indicating valid (1) or null
|
||||
/// (0). Equal in length to values
|
||||
/// \return Status
|
||||
Status AppendValues(const uint8_t* values, int64_t length,
|
||||
const std::vector<bool>& is_valid);
|
||||
|
||||
/// \brief Append a sequence of elements in one shot
|
||||
/// \param[in] values a std::vector of bytes
|
||||
/// \param[in] is_valid an std::vector<bool> indicating valid (1) or null
|
||||
/// (0). Equal in length to values
|
||||
/// \return Status
|
||||
Status AppendValues(const std::vector<uint8_t>& values,
|
||||
const std::vector<bool>& is_valid);
|
||||
|
||||
/// \brief Append a sequence of elements in one shot
|
||||
/// \param[in] values a std::vector of bytes
|
||||
/// \return Status
|
||||
Status AppendValues(const std::vector<uint8_t>& values);
|
||||
|
||||
/// \brief Append a sequence of elements in one shot
|
||||
/// \param[in] values an std::vector<bool> indicating true (1) or false
|
||||
/// \param[in] is_valid an std::vector<bool> indicating valid (1) or null
|
||||
/// (0). Equal in length to values
|
||||
/// \return Status
|
||||
Status AppendValues(const std::vector<bool>& values, const std::vector<bool>& is_valid);
|
||||
|
||||
/// \brief Append a sequence of elements in one shot
|
||||
/// \param[in] values an std::vector<bool> indicating true (1) or false
|
||||
/// \return Status
|
||||
Status AppendValues(const std::vector<bool>& values);
|
||||
|
||||
/// \brief Append a sequence of elements in one shot
|
||||
/// \param[in] values_begin InputIterator to the beginning of the values
|
||||
/// \param[in] values_end InputIterator pointing to the end of the values
|
||||
/// or null(0) values
|
||||
/// \return Status
|
||||
template <typename ValuesIter>
|
||||
Status AppendValues(ValuesIter values_begin, ValuesIter values_end) {
|
||||
int64_t length = static_cast<int64_t>(std::distance(values_begin, values_end));
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
data_builder_.UnsafeAppend<false>(
|
||||
length, [&values_begin]() -> bool { return *values_begin++; });
|
||||
// this updates length_
|
||||
UnsafeSetNotNull(length);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \brief Append a sequence of elements in one shot, with a specified nullmap
|
||||
/// \param[in] values_begin InputIterator to the beginning of the values
|
||||
/// \param[in] values_end InputIterator pointing to the end of the values
|
||||
/// \param[in] valid_begin InputIterator with elements indication valid(1)
|
||||
/// or null(0) values
|
||||
/// \return Status
|
||||
template <typename ValuesIter, typename ValidIter>
|
||||
enable_if_t<!std::is_pointer<ValidIter>::value, Status> AppendValues(
|
||||
ValuesIter values_begin, ValuesIter values_end, ValidIter valid_begin) {
|
||||
static_assert(!internal::is_null_pointer<ValidIter>::value,
|
||||
"Don't pass a NULLPTR directly as valid_begin, use the 2-argument "
|
||||
"version instead");
|
||||
int64_t length = static_cast<int64_t>(std::distance(values_begin, values_end));
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
|
||||
data_builder_.UnsafeAppend<false>(
|
||||
length, [&values_begin]() -> bool { return *values_begin++; });
|
||||
null_bitmap_builder_.UnsafeAppend<true>(
|
||||
length, [&valid_begin]() -> bool { return *valid_begin++; });
|
||||
length_ = null_bitmap_builder_.length();
|
||||
null_count_ = null_bitmap_builder_.false_count();
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Same as above, for a pointer type ValidIter
|
||||
template <typename ValuesIter, typename ValidIter>
|
||||
enable_if_t<std::is_pointer<ValidIter>::value, Status> AppendValues(
|
||||
ValuesIter values_begin, ValuesIter values_end, ValidIter valid_begin) {
|
||||
int64_t length = static_cast<int64_t>(std::distance(values_begin, values_end));
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
data_builder_.UnsafeAppend<false>(
|
||||
length, [&values_begin]() -> bool { return *values_begin++; });
|
||||
|
||||
if (valid_begin == NULLPTR) {
|
||||
UnsafeSetNotNull(length);
|
||||
} else {
|
||||
null_bitmap_builder_.UnsafeAppend<true>(
|
||||
length, [&valid_begin]() -> bool { return *valid_begin++; });
|
||||
}
|
||||
length_ = null_bitmap_builder_.length();
|
||||
null_count_ = null_bitmap_builder_.false_count();
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AppendValues(int64_t length, bool value);
|
||||
|
||||
Status AppendArraySlice(const ArraySpan& array, int64_t offset,
|
||||
int64_t length) override {
|
||||
return AppendValues(array.GetValues<uint8_t>(1, 0), length,
|
||||
array.GetValues<uint8_t>(0, 0), array.offset + offset);
|
||||
}
|
||||
|
||||
Status FinishInternal(std::shared_ptr<ArrayData>* out) override;
|
||||
|
||||
/// \cond FALSE
|
||||
using ArrayBuilder::Finish;
|
||||
/// \endcond
|
||||
|
||||
Status Finish(std::shared_ptr<BooleanArray>* out) { return FinishTyped(out); }
|
||||
|
||||
void Reset() override;
|
||||
Status Resize(int64_t capacity) override;
|
||||
|
||||
std::shared_ptr<DataType> type() const override { return boolean(); }
|
||||
|
||||
protected:
|
||||
TypedBufferBuilder<bool> data_builder_;
|
||||
};
|
||||
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,66 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// Contains declarations of time related Arrow builder types.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
|
||||
#include "arrow/array/builder_base.h"
|
||||
#include "arrow/array/builder_primitive.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
/// \addtogroup temporal-builders
|
||||
///
|
||||
/// @{
|
||||
|
||||
// TODO(ARROW-7938): this class is untested
|
||||
|
||||
class ARROW_EXPORT DayTimeIntervalBuilder : public NumericBuilder<DayTimeIntervalType> {
|
||||
public:
|
||||
using DayMilliseconds = DayTimeIntervalType::DayMilliseconds;
|
||||
|
||||
explicit DayTimeIntervalBuilder(MemoryPool* pool = default_memory_pool(),
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: DayTimeIntervalBuilder(day_time_interval(), pool, alignment) {}
|
||||
|
||||
explicit DayTimeIntervalBuilder(std::shared_ptr<DataType> type,
|
||||
MemoryPool* pool = default_memory_pool(),
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: NumericBuilder<DayTimeIntervalType>(type, pool, alignment) {}
|
||||
};
|
||||
|
||||
class ARROW_EXPORT MonthDayNanoIntervalBuilder
|
||||
: public NumericBuilder<MonthDayNanoIntervalType> {
|
||||
public:
|
||||
using MonthDayNanos = MonthDayNanoIntervalType::MonthDayNanos;
|
||||
|
||||
explicit MonthDayNanoIntervalBuilder(MemoryPool* pool = default_memory_pool(),
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: MonthDayNanoIntervalBuilder(month_day_nano_interval(), pool, alignment) {}
|
||||
|
||||
explicit MonthDayNanoIntervalBuilder(std::shared_ptr<DataType> type,
|
||||
MemoryPool* pool = default_memory_pool(),
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: NumericBuilder<MonthDayNanoIntervalType>(type, pool, alignment) {}
|
||||
};
|
||||
|
||||
/// @}
|
||||
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,254 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/array/array_nested.h"
|
||||
#include "arrow/array/builder_base.h"
|
||||
#include "arrow/array/data.h"
|
||||
#include "arrow/buffer_builder.h"
|
||||
#include "arrow/memory_pool.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/type.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
/// \addtogroup nested-builders
|
||||
///
|
||||
/// @{
|
||||
|
||||
/// \brief Base class for union array builds.
|
||||
///
|
||||
/// Note that while we subclass ArrayBuilder, as union types do not have a
|
||||
/// validity bitmap, the bitmap builder member of ArrayBuilder is not used.
|
||||
class ARROW_EXPORT BasicUnionBuilder : public ArrayBuilder {
|
||||
public:
|
||||
Status FinishInternal(std::shared_ptr<ArrayData>* out) override;
|
||||
|
||||
/// \cond FALSE
|
||||
using ArrayBuilder::Finish;
|
||||
/// \endcond
|
||||
|
||||
Status Finish(std::shared_ptr<UnionArray>* out) { return FinishTyped(out); }
|
||||
|
||||
/// \brief Make a new child builder available to the UnionArray
|
||||
///
|
||||
/// \param[in] new_child the child builder
|
||||
/// \param[in] field_name the name of the field in the union array type
|
||||
/// if type inference is used
|
||||
/// \return child index, which is the "type" argument that needs
|
||||
/// to be passed to the "Append" method to add a new element to
|
||||
/// the union array.
|
||||
int8_t AppendChild(const std::shared_ptr<ArrayBuilder>& new_child,
|
||||
const std::string& field_name = "");
|
||||
|
||||
std::shared_ptr<DataType> type() const override;
|
||||
|
||||
int64_t length() const override { return types_builder_.length(); }
|
||||
|
||||
protected:
|
||||
BasicUnionBuilder(MemoryPool* pool, int64_t alignment,
|
||||
const std::vector<std::shared_ptr<ArrayBuilder>>& children,
|
||||
const std::shared_ptr<DataType>& type);
|
||||
|
||||
int8_t NextTypeId();
|
||||
|
||||
std::vector<std::shared_ptr<Field>> child_fields_;
|
||||
std::vector<int8_t> type_codes_;
|
||||
UnionMode::type mode_;
|
||||
|
||||
std::vector<ArrayBuilder*> type_id_to_children_;
|
||||
std::vector<int> type_id_to_child_id_;
|
||||
// for all type_id < dense_type_id_, type_id_to_children_[type_id] != nullptr
|
||||
int8_t dense_type_id_ = 0;
|
||||
TypedBufferBuilder<int8_t> types_builder_;
|
||||
};
|
||||
|
||||
/// \class DenseUnionBuilder
|
||||
///
|
||||
/// This API is EXPERIMENTAL.
|
||||
class ARROW_EXPORT DenseUnionBuilder : public BasicUnionBuilder {
|
||||
public:
|
||||
/// Use this constructor to initialize the UnionBuilder with no child builders,
|
||||
/// allowing type to be inferred. You will need to call AppendChild for each of the
|
||||
/// children builders you want to use.
|
||||
explicit DenseUnionBuilder(MemoryPool* pool,
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: BasicUnionBuilder(pool, alignment, {}, dense_union(FieldVector{})),
|
||||
offsets_builder_(pool, alignment) {}
|
||||
|
||||
/// Use this constructor to specify the type explicitly.
|
||||
/// You can still add child builders to the union after using this constructor
|
||||
DenseUnionBuilder(MemoryPool* pool,
|
||||
const std::vector<std::shared_ptr<ArrayBuilder>>& children,
|
||||
const std::shared_ptr<DataType>& type,
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: BasicUnionBuilder(pool, alignment, children, type),
|
||||
offsets_builder_(pool, alignment) {}
|
||||
|
||||
Status AppendNull() final {
|
||||
const int8_t first_child_code = type_codes_[0];
|
||||
ArrayBuilder* child_builder = type_id_to_children_[first_child_code];
|
||||
ARROW_RETURN_NOT_OK(types_builder_.Append(first_child_code));
|
||||
ARROW_RETURN_NOT_OK(
|
||||
offsets_builder_.Append(static_cast<int32_t>(child_builder->length())));
|
||||
// Append a null arbitrarily to the first child
|
||||
return child_builder->AppendNull();
|
||||
}
|
||||
|
||||
Status AppendNulls(int64_t length) final {
|
||||
const int8_t first_child_code = type_codes_[0];
|
||||
ArrayBuilder* child_builder = type_id_to_children_[first_child_code];
|
||||
ARROW_RETURN_NOT_OK(types_builder_.Append(length, first_child_code));
|
||||
ARROW_RETURN_NOT_OK(
|
||||
offsets_builder_.Append(length, static_cast<int32_t>(child_builder->length())));
|
||||
// Append just a single null to the first child
|
||||
return child_builder->AppendNull();
|
||||
}
|
||||
|
||||
Status AppendEmptyValue() final {
|
||||
const int8_t first_child_code = type_codes_[0];
|
||||
ArrayBuilder* child_builder = type_id_to_children_[first_child_code];
|
||||
ARROW_RETURN_NOT_OK(types_builder_.Append(first_child_code));
|
||||
ARROW_RETURN_NOT_OK(
|
||||
offsets_builder_.Append(static_cast<int32_t>(child_builder->length())));
|
||||
// Append an empty value arbitrarily to the first child
|
||||
return child_builder->AppendEmptyValue();
|
||||
}
|
||||
|
||||
Status AppendEmptyValues(int64_t length) final {
|
||||
const int8_t first_child_code = type_codes_[0];
|
||||
ArrayBuilder* child_builder = type_id_to_children_[first_child_code];
|
||||
ARROW_RETURN_NOT_OK(types_builder_.Append(length, first_child_code));
|
||||
ARROW_RETURN_NOT_OK(
|
||||
offsets_builder_.Append(length, static_cast<int32_t>(child_builder->length())));
|
||||
// Append just a single empty value to the first child
|
||||
return child_builder->AppendEmptyValue();
|
||||
}
|
||||
|
||||
/// \brief Append an element to the UnionArray. This must be followed
|
||||
/// by an append to the appropriate child builder.
|
||||
///
|
||||
/// \param[in] next_type type_id of the child to which the next value will be appended.
|
||||
///
|
||||
/// The corresponding child builder must be appended to independently after this method
|
||||
/// is called.
|
||||
Status Append(int8_t next_type) {
|
||||
ARROW_RETURN_NOT_OK(types_builder_.Append(next_type));
|
||||
if (type_id_to_children_[next_type]->length() == kListMaximumElements) {
|
||||
return Status::CapacityError(
|
||||
"a dense UnionArray cannot contain more than 2^31 - 1 elements from a single "
|
||||
"child");
|
||||
}
|
||||
auto offset = static_cast<int32_t>(type_id_to_children_[next_type]->length());
|
||||
return offsets_builder_.Append(offset);
|
||||
}
|
||||
|
||||
Status AppendArraySlice(const ArraySpan& array, int64_t offset,
|
||||
int64_t length) override;
|
||||
|
||||
Status FinishInternal(std::shared_ptr<ArrayData>* out) override;
|
||||
|
||||
private:
|
||||
TypedBufferBuilder<int32_t> offsets_builder_;
|
||||
};
|
||||
|
||||
/// \class SparseUnionBuilder
|
||||
///
|
||||
/// This API is EXPERIMENTAL.
|
||||
class ARROW_EXPORT SparseUnionBuilder : public BasicUnionBuilder {
|
||||
public:
|
||||
/// Use this constructor to initialize the UnionBuilder with no child builders,
|
||||
/// allowing type to be inferred. You will need to call AppendChild for each of the
|
||||
/// children builders you want to use.
|
||||
explicit SparseUnionBuilder(MemoryPool* pool,
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: BasicUnionBuilder(pool, alignment, {}, sparse_union(FieldVector{})) {}
|
||||
|
||||
/// Use this constructor to specify the type explicitly.
|
||||
/// You can still add child builders to the union after using this constructor
|
||||
SparseUnionBuilder(MemoryPool* pool,
|
||||
const std::vector<std::shared_ptr<ArrayBuilder>>& children,
|
||||
const std::shared_ptr<DataType>& type,
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: BasicUnionBuilder(pool, alignment, children, type) {}
|
||||
|
||||
/// \brief Append a null value.
|
||||
///
|
||||
/// A null is appended to the first child, empty values to the other children.
|
||||
Status AppendNull() final {
|
||||
const auto first_child_code = type_codes_[0];
|
||||
ARROW_RETURN_NOT_OK(types_builder_.Append(first_child_code));
|
||||
ARROW_RETURN_NOT_OK(type_id_to_children_[first_child_code]->AppendNull());
|
||||
for (int i = 1; i < static_cast<int>(type_codes_.size()); ++i) {
|
||||
ARROW_RETURN_NOT_OK(type_id_to_children_[type_codes_[i]]->AppendEmptyValue());
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \brief Append multiple null values.
|
||||
///
|
||||
/// Nulls are appended to the first child, empty values to the other children.
|
||||
Status AppendNulls(int64_t length) final {
|
||||
const auto first_child_code = type_codes_[0];
|
||||
ARROW_RETURN_NOT_OK(types_builder_.Append(length, first_child_code));
|
||||
ARROW_RETURN_NOT_OK(type_id_to_children_[first_child_code]->AppendNulls(length));
|
||||
for (int i = 1; i < static_cast<int>(type_codes_.size()); ++i) {
|
||||
ARROW_RETURN_NOT_OK(
|
||||
type_id_to_children_[type_codes_[i]]->AppendEmptyValues(length));
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AppendEmptyValue() final {
|
||||
ARROW_RETURN_NOT_OK(types_builder_.Append(type_codes_[0]));
|
||||
for (int8_t code : type_codes_) {
|
||||
ARROW_RETURN_NOT_OK(type_id_to_children_[code]->AppendEmptyValue());
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AppendEmptyValues(int64_t length) final {
|
||||
ARROW_RETURN_NOT_OK(types_builder_.Append(length, type_codes_[0]));
|
||||
for (int8_t code : type_codes_) {
|
||||
ARROW_RETURN_NOT_OK(type_id_to_children_[code]->AppendEmptyValues(length));
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \brief Append an element to the UnionArray. This must be followed
|
||||
/// by an append to the appropriate child builder.
|
||||
///
|
||||
/// \param[in] next_type type_id of the child to which the next value will be appended.
|
||||
///
|
||||
/// The corresponding child builder must be appended to independently after this method
|
||||
/// is called, and all other child builders must have null or empty value appended.
|
||||
Status Append(int8_t next_type) { return types_builder_.Append(next_type); }
|
||||
|
||||
Status AppendArraySlice(const ArraySpan& array, int64_t offset,
|
||||
int64_t length) override;
|
||||
};
|
||||
|
||||
/// @}
|
||||
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,37 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
|
||||
#include "arrow/type_fwd.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
/// \brief Concatenate arrays
|
||||
///
|
||||
/// \param[in] arrays a vector of arrays to be concatenated
|
||||
/// \param[in] pool memory to store the result will be allocated from this memory pool
|
||||
/// \return the concatenated array
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Array>> Concatenate(const ArrayVector& arrays,
|
||||
MemoryPool* pool = default_memory_pool());
|
||||
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,391 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <atomic> // IWYU pragma: export
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/buffer.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/type.h"
|
||||
#include "arrow/util/bit_util.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
class Array;
|
||||
|
||||
// When slicing, we do not know the null count of the sliced range without
|
||||
// doing some computation. To avoid doing this eagerly, we set the null count
|
||||
// to -1 (any negative number will do). When Array::null_count is called the
|
||||
// first time, the null count will be computed. See ARROW-33
|
||||
constexpr int64_t kUnknownNullCount = -1;
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// Generic array data container
|
||||
|
||||
/// \class ArrayData
|
||||
/// \brief Mutable container for generic Arrow array data
|
||||
///
|
||||
/// This data structure is a self-contained representation of the memory and
|
||||
/// metadata inside an Arrow array data structure (called vectors in Java). The
|
||||
/// classes arrow::Array and its subclasses provide strongly-typed accessors
|
||||
/// with support for the visitor pattern and other affordances.
|
||||
///
|
||||
/// This class is designed for easy internal data manipulation, analytical data
|
||||
/// processing, and data transport to and from IPC messages. For example, we
|
||||
/// could cast from int64 to float64 like so:
|
||||
///
|
||||
/// Int64Array arr = GetMyData();
|
||||
/// auto new_data = arr.data()->Copy();
|
||||
/// new_data->type = arrow::float64();
|
||||
/// DoubleArray double_arr(new_data);
|
||||
///
|
||||
/// This object is also useful in an analytics setting where memory may be
|
||||
/// reused. For example, if we had a group of operations all returning doubles,
|
||||
/// say:
|
||||
///
|
||||
/// Log(Sqrt(Expr(arr)))
|
||||
///
|
||||
/// Then the low-level implementations of each of these functions could have
|
||||
/// the signatures
|
||||
///
|
||||
/// void Log(const ArrayData& values, ArrayData* out);
|
||||
///
|
||||
/// As another example a function may consume one or more memory buffers in an
|
||||
/// input array and replace them with newly-allocated data, changing the output
|
||||
/// data type as well.
|
||||
struct ARROW_EXPORT ArrayData {
|
||||
ArrayData() = default;
|
||||
|
||||
ArrayData(std::shared_ptr<DataType> type, int64_t length,
|
||||
int64_t null_count = kUnknownNullCount, int64_t offset = 0)
|
||||
: type(std::move(type)), length(length), null_count(null_count), offset(offset) {}
|
||||
|
||||
ArrayData(std::shared_ptr<DataType> type, int64_t length,
|
||||
std::vector<std::shared_ptr<Buffer>> buffers,
|
||||
int64_t null_count = kUnknownNullCount, int64_t offset = 0)
|
||||
: ArrayData(std::move(type), length, null_count, offset) {
|
||||
this->buffers = std::move(buffers);
|
||||
}
|
||||
|
||||
ArrayData(std::shared_ptr<DataType> type, int64_t length,
|
||||
std::vector<std::shared_ptr<Buffer>> buffers,
|
||||
std::vector<std::shared_ptr<ArrayData>> child_data,
|
||||
int64_t null_count = kUnknownNullCount, int64_t offset = 0)
|
||||
: ArrayData(std::move(type), length, null_count, offset) {
|
||||
this->buffers = std::move(buffers);
|
||||
this->child_data = std::move(child_data);
|
||||
}
|
||||
|
||||
static std::shared_ptr<ArrayData> Make(std::shared_ptr<DataType> type, int64_t length,
|
||||
std::vector<std::shared_ptr<Buffer>> buffers,
|
||||
int64_t null_count = kUnknownNullCount,
|
||||
int64_t offset = 0);
|
||||
|
||||
static std::shared_ptr<ArrayData> Make(
|
||||
std::shared_ptr<DataType> type, int64_t length,
|
||||
std::vector<std::shared_ptr<Buffer>> buffers,
|
||||
std::vector<std::shared_ptr<ArrayData>> child_data,
|
||||
int64_t null_count = kUnknownNullCount, int64_t offset = 0);
|
||||
|
||||
static std::shared_ptr<ArrayData> Make(
|
||||
std::shared_ptr<DataType> type, int64_t length,
|
||||
std::vector<std::shared_ptr<Buffer>> buffers,
|
||||
std::vector<std::shared_ptr<ArrayData>> child_data,
|
||||
std::shared_ptr<ArrayData> dictionary, int64_t null_count = kUnknownNullCount,
|
||||
int64_t offset = 0);
|
||||
|
||||
static std::shared_ptr<ArrayData> Make(std::shared_ptr<DataType> type, int64_t length,
|
||||
int64_t null_count = kUnknownNullCount,
|
||||
int64_t offset = 0);
|
||||
|
||||
// Move constructor
|
||||
ArrayData(ArrayData&& other) noexcept
|
||||
: type(std::move(other.type)),
|
||||
length(other.length),
|
||||
offset(other.offset),
|
||||
buffers(std::move(other.buffers)),
|
||||
child_data(std::move(other.child_data)),
|
||||
dictionary(std::move(other.dictionary)) {
|
||||
SetNullCount(other.null_count);
|
||||
}
|
||||
|
||||
// Copy constructor
|
||||
ArrayData(const ArrayData& other) noexcept
|
||||
: type(other.type),
|
||||
length(other.length),
|
||||
offset(other.offset),
|
||||
buffers(other.buffers),
|
||||
child_data(other.child_data),
|
||||
dictionary(other.dictionary) {
|
||||
SetNullCount(other.null_count);
|
||||
}
|
||||
|
||||
// Move assignment
|
||||
ArrayData& operator=(ArrayData&& other) {
|
||||
type = std::move(other.type);
|
||||
length = other.length;
|
||||
SetNullCount(other.null_count);
|
||||
offset = other.offset;
|
||||
buffers = std::move(other.buffers);
|
||||
child_data = std::move(other.child_data);
|
||||
dictionary = std::move(other.dictionary);
|
||||
return *this;
|
||||
}
|
||||
|
||||
// Copy assignment
|
||||
ArrayData& operator=(const ArrayData& other) {
|
||||
type = other.type;
|
||||
length = other.length;
|
||||
SetNullCount(other.null_count);
|
||||
offset = other.offset;
|
||||
buffers = other.buffers;
|
||||
child_data = other.child_data;
|
||||
dictionary = other.dictionary;
|
||||
return *this;
|
||||
}
|
||||
|
||||
std::shared_ptr<ArrayData> Copy() const { return std::make_shared<ArrayData>(*this); }
|
||||
|
||||
bool IsNull(int64_t i) const {
|
||||
return ((buffers[0] != NULLPTR) ? !bit_util::GetBit(buffers[0]->data(), i + offset)
|
||||
: null_count.load() == length);
|
||||
}
|
||||
|
||||
// Access a buffer's data as a typed C pointer
|
||||
template <typename T>
|
||||
inline const T* GetValues(int i, int64_t absolute_offset) const {
|
||||
if (buffers[i]) {
|
||||
return reinterpret_cast<const T*>(buffers[i]->data()) + absolute_offset;
|
||||
} else {
|
||||
return NULLPTR;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline const T* GetValues(int i) const {
|
||||
return GetValues<T>(i, offset);
|
||||
}
|
||||
|
||||
// Like GetValues, but returns NULLPTR instead of aborting if the underlying
|
||||
// buffer is not a CPU buffer.
|
||||
template <typename T>
|
||||
inline const T* GetValuesSafe(int i, int64_t absolute_offset) const {
|
||||
if (buffers[i] && buffers[i]->is_cpu()) {
|
||||
return reinterpret_cast<const T*>(buffers[i]->data()) + absolute_offset;
|
||||
} else {
|
||||
return NULLPTR;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline const T* GetValuesSafe(int i) const {
|
||||
return GetValuesSafe<T>(i, offset);
|
||||
}
|
||||
|
||||
// Access a buffer's data as a typed C pointer
|
||||
template <typename T>
|
||||
inline T* GetMutableValues(int i, int64_t absolute_offset) {
|
||||
if (buffers[i]) {
|
||||
return reinterpret_cast<T*>(buffers[i]->mutable_data()) + absolute_offset;
|
||||
} else {
|
||||
return NULLPTR;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline T* GetMutableValues(int i) {
|
||||
return GetMutableValues<T>(i, offset);
|
||||
}
|
||||
|
||||
/// \brief Construct a zero-copy slice of the data with the given offset and length
|
||||
std::shared_ptr<ArrayData> Slice(int64_t offset, int64_t length) const;
|
||||
|
||||
/// \brief Input-checking variant of Slice
|
||||
///
|
||||
/// An Invalid Status is returned if the requested slice falls out of bounds.
|
||||
/// Note that unlike Slice, `length` isn't clamped to the available buffer size.
|
||||
Result<std::shared_ptr<ArrayData>> SliceSafe(int64_t offset, int64_t length) const;
|
||||
|
||||
void SetNullCount(int64_t v) { null_count.store(v); }
|
||||
|
||||
/// \brief Return null count, or compute and set it if it's not known
|
||||
int64_t GetNullCount() const;
|
||||
|
||||
bool MayHaveNulls() const {
|
||||
// If an ArrayData is slightly malformed it may have kUnknownNullCount set
|
||||
// but no buffer
|
||||
return null_count.load() != 0 && buffers[0] != NULLPTR;
|
||||
}
|
||||
|
||||
std::shared_ptr<DataType> type;
|
||||
int64_t length = 0;
|
||||
mutable std::atomic<int64_t> null_count{0};
|
||||
// The logical start point into the physical buffers (in values, not bytes).
|
||||
// Note that, for child data, this must be *added* to the child data's own offset.
|
||||
int64_t offset = 0;
|
||||
std::vector<std::shared_ptr<Buffer>> buffers;
|
||||
std::vector<std::shared_ptr<ArrayData>> child_data;
|
||||
|
||||
// The dictionary for this Array, if any. Only used for dictionary type
|
||||
std::shared_ptr<ArrayData> dictionary;
|
||||
};
|
||||
|
||||
/// \brief A non-owning Buffer reference
|
||||
struct ARROW_EXPORT BufferSpan {
|
||||
// It is the user of this class's responsibility to ensure that
|
||||
// buffers that were const originally are not written to
|
||||
// accidentally.
|
||||
uint8_t* data = NULLPTR;
|
||||
int64_t size = 0;
|
||||
// Pointer back to buffer that owns this memory
|
||||
const std::shared_ptr<Buffer>* owner = NULLPTR;
|
||||
};
|
||||
|
||||
/// \brief EXPERIMENTAL: A non-owning ArrayData reference that is cheaply
|
||||
/// copyable and does not contain any shared_ptr objects. Do not use in public
|
||||
/// APIs aside from compute kernels for now
|
||||
struct ARROW_EXPORT ArraySpan {
|
||||
const DataType* type = NULLPTR;
|
||||
int64_t length = 0;
|
||||
mutable int64_t null_count = kUnknownNullCount;
|
||||
int64_t offset = 0;
|
||||
BufferSpan buffers[3];
|
||||
|
||||
// 16 bytes of scratch space to enable this ArraySpan to be a view onto
|
||||
// scalar values including binary scalars (where we need to create a buffer
|
||||
// that looks like two 32-bit or 64-bit offsets)
|
||||
uint64_t scratch_space[2];
|
||||
|
||||
ArraySpan() = default;
|
||||
|
||||
explicit ArraySpan(const DataType* type, int64_t length) : type(type), length(length) {}
|
||||
|
||||
ArraySpan(const ArrayData& data) { // NOLINT implicit conversion
|
||||
SetMembers(data);
|
||||
}
|
||||
explicit ArraySpan(const Scalar& data) { FillFromScalar(data); }
|
||||
|
||||
/// If dictionary-encoded, put dictionary in the first entry
|
||||
std::vector<ArraySpan> child_data;
|
||||
|
||||
/// \brief Populate ArraySpan to look like an array of length 1 pointing at
|
||||
/// the data members of a Scalar value
|
||||
void FillFromScalar(const Scalar& value);
|
||||
|
||||
void SetMembers(const ArrayData& data);
|
||||
|
||||
void SetBuffer(int index, const std::shared_ptr<Buffer>& buffer) {
|
||||
this->buffers[index].data = const_cast<uint8_t*>(buffer->data());
|
||||
this->buffers[index].size = buffer->size();
|
||||
this->buffers[index].owner = &buffer;
|
||||
}
|
||||
|
||||
const ArraySpan& dictionary() const { return child_data[0]; }
|
||||
|
||||
/// \brief Return the number of buffers (out of 3) that are used to
|
||||
/// constitute this array
|
||||
int num_buffers() const;
|
||||
|
||||
// Access a buffer's data as a typed C pointer
|
||||
template <typename T>
|
||||
inline T* GetValues(int i, int64_t absolute_offset) {
|
||||
return reinterpret_cast<T*>(buffers[i].data) + absolute_offset;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline T* GetValues(int i) {
|
||||
return GetValues<T>(i, this->offset);
|
||||
}
|
||||
|
||||
// Access a buffer's data as a typed C pointer
|
||||
template <typename T>
|
||||
inline const T* GetValues(int i, int64_t absolute_offset) const {
|
||||
return reinterpret_cast<const T*>(buffers[i].data) + absolute_offset;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline const T* GetValues(int i) const {
|
||||
return GetValues<T>(i, this->offset);
|
||||
}
|
||||
|
||||
inline bool IsValid(int64_t i) const {
|
||||
return ((this->buffers[0].data != NULLPTR)
|
||||
? bit_util::GetBit(this->buffers[0].data, i + this->offset)
|
||||
: this->null_count != this->length);
|
||||
}
|
||||
|
||||
inline bool IsNull(int64_t i) const { return !IsValid(i); }
|
||||
|
||||
std::shared_ptr<ArrayData> ToArrayData() const;
|
||||
|
||||
std::shared_ptr<Array> ToArray() const;
|
||||
|
||||
std::shared_ptr<Buffer> GetBuffer(int index) const {
|
||||
const BufferSpan& buf = this->buffers[index];
|
||||
if (buf.owner) {
|
||||
return *buf.owner;
|
||||
} else if (buf.data != NULLPTR) {
|
||||
// Buffer points to some memory without an owning buffer
|
||||
return std::make_shared<Buffer>(buf.data, buf.size);
|
||||
} else {
|
||||
return NULLPTR;
|
||||
}
|
||||
}
|
||||
|
||||
void SetSlice(int64_t offset, int64_t length) {
|
||||
this->offset = offset;
|
||||
this->length = length;
|
||||
if (this->type->id() != Type::NA) {
|
||||
this->null_count = kUnknownNullCount;
|
||||
} else {
|
||||
this->null_count = this->length;
|
||||
}
|
||||
}
|
||||
|
||||
/// \brief Return null count, or compute and set it if it's not known
|
||||
int64_t GetNullCount() const;
|
||||
|
||||
bool MayHaveNulls() const {
|
||||
// If an ArrayData is slightly malformed it may have kUnknownNullCount set
|
||||
// but no buffer
|
||||
return null_count != 0 && buffers[0].data != NULLPTR;
|
||||
}
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
void FillZeroLengthArray(const DataType* type, ArraySpan* span);
|
||||
|
||||
/// Construct a zero-copy view of this ArrayData with the given type.
|
||||
///
|
||||
/// This method checks if the types are layout-compatible.
|
||||
/// Nested types are traversed in depth-first order. Data buffers must have
|
||||
/// the same item sizes, even though the logical types may be different.
|
||||
/// An error is returned if the types are not layout-compatible.
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<ArrayData>> GetArrayView(const std::shared_ptr<ArrayData>& data,
|
||||
const std::shared_ptr<DataType>& type);
|
||||
|
||||
} // namespace internal
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,76 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
#include <iosfwd>
|
||||
#include <memory>
|
||||
|
||||
#include "arrow/array/array_base.h"
|
||||
#include "arrow/array/array_nested.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/type.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
/// \brief Compare two arrays, returning an edit script which expresses the difference
|
||||
/// between them
|
||||
///
|
||||
/// An edit script is an array of struct(insert: bool, run_length: int64_t).
|
||||
/// Each element of "insert" determines whether an element was inserted into (true)
|
||||
/// or deleted from (false) base. Each insertion or deletion is followed by a run of
|
||||
/// elements which are unchanged from base to target; the length of this run is stored
|
||||
/// in "run_length". (Note that the edit script begins and ends with a run of shared
|
||||
/// elements but both fields of the struct must have the same length. To accommodate this
|
||||
/// the first element of "insert" should be ignored.)
|
||||
///
|
||||
/// For example for base "hlloo" and target "hello", the edit script would be
|
||||
/// [
|
||||
/// {"insert": false, "run_length": 1}, // leading run of length 1 ("h")
|
||||
/// {"insert": true, "run_length": 3}, // insert("e") then a run of length 3 ("llo")
|
||||
/// {"insert": false, "run_length": 0} // delete("o") then an empty run
|
||||
/// ]
|
||||
///
|
||||
/// Diffing arrays containing nulls is not currently supported.
|
||||
///
|
||||
/// \param[in] base baseline for comparison
|
||||
/// \param[in] target an array of identical type to base whose elements differ from base's
|
||||
/// \param[in] pool memory to store the result will be allocated from this memory pool
|
||||
/// \return an edit script array which can be applied to base to produce target
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<StructArray>> Diff(const Array& base, const Array& target,
|
||||
MemoryPool* pool = default_memory_pool());
|
||||
|
||||
/// \brief visitor interface for easy traversal of an edit script
|
||||
///
|
||||
/// visitor will be called for each hunk of insertions and deletions.
|
||||
ARROW_EXPORT Status VisitEditScript(
|
||||
const Array& edits,
|
||||
const std::function<Status(int64_t delete_begin, int64_t delete_end,
|
||||
int64_t insert_begin, int64_t insert_end)>& visitor);
|
||||
|
||||
/// \brief return a function which will format an edit script in unified
|
||||
/// diff format to os, given base and target arrays of type
|
||||
ARROW_EXPORT Result<
|
||||
std::function<Status(const Array& edits, const Array& base, const Array& target)>>
|
||||
MakeUnifiedDiffFormatter(const DataType& type, std::ostream* os);
|
||||
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,89 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/array/data.h"
|
||||
#include "arrow/compare.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/type.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
/// \brief Create a strongly-typed Array instance from generic ArrayData
|
||||
/// \param[in] data the array contents
|
||||
/// \return the resulting Array instance
|
||||
ARROW_EXPORT
|
||||
std::shared_ptr<Array> MakeArray(const std::shared_ptr<ArrayData>& data);
|
||||
|
||||
/// \brief Create a strongly-typed Array instance with all elements null
|
||||
/// \param[in] type the array type
|
||||
/// \param[in] length the array length
|
||||
/// \param[in] pool the memory pool to allocate memory from
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Array>> MakeArrayOfNull(const std::shared_ptr<DataType>& type,
|
||||
int64_t length,
|
||||
MemoryPool* pool = default_memory_pool());
|
||||
|
||||
/// \brief Create an Array instance whose slots are the given scalar
|
||||
/// \param[in] scalar the value with which to fill the array
|
||||
/// \param[in] length the array length
|
||||
/// \param[in] pool the memory pool to allocate memory from
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Array>> MakeArrayFromScalar(
|
||||
const Scalar& scalar, int64_t length, MemoryPool* pool = default_memory_pool());
|
||||
|
||||
/// \brief Create an empty Array of a given type
|
||||
///
|
||||
/// The output Array will be of the given type.
|
||||
///
|
||||
/// \param[in] type the data type of the empty Array
|
||||
/// \param[in] pool the memory pool to allocate memory from
|
||||
/// \return the resulting Array
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Array>> MakeEmptyArray(std::shared_ptr<DataType> type,
|
||||
MemoryPool* pool = default_memory_pool());
|
||||
|
||||
namespace internal {
|
||||
|
||||
/// \brief Swap endian of each element in a generic ArrayData
|
||||
///
|
||||
/// As dictionaries are often shared between different arrays, dictionaries
|
||||
/// are not swapped by this function and should be handled separately.
|
||||
///
|
||||
/// \param[in] data the array contents
|
||||
/// \return the resulting ArrayData whose elements were swapped
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<ArrayData>> SwapEndianArrayData(
|
||||
const std::shared_ptr<ArrayData>& data);
|
||||
|
||||
/// Given a number of ArrayVectors, treat each ArrayVector as the
|
||||
/// chunks of a chunked array. Then rechunk each ArrayVector such that
|
||||
/// all ArrayVectors are chunked identically. It is mandatory that
|
||||
/// all ArrayVectors contain the same total number of elements.
|
||||
ARROW_EXPORT
|
||||
std::vector<ArrayVector> RechunkArraysConsistently(const std::vector<ArrayVector>&);
|
||||
|
||||
} // namespace internal
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,56 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/type_fwd.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace internal {
|
||||
|
||||
// Internal functions implementing Array::Validate() and friends.
|
||||
|
||||
// O(1) array metadata validation
|
||||
|
||||
ARROW_EXPORT
|
||||
Status ValidateArray(const Array& array);
|
||||
|
||||
ARROW_EXPORT
|
||||
Status ValidateArray(const ArrayData& data);
|
||||
|
||||
// O(N) array data validation.
|
||||
// Note that, starting from 7.0.0, "full" routines also validate metadata.
|
||||
// Before, ValidateArray() needed to be called before ValidateArrayFull()
|
||||
// to ensure metadata correctness, otherwise invalid memory accesses
|
||||
// may occur.
|
||||
|
||||
ARROW_EXPORT
|
||||
Status ValidateArrayFull(const Array& array);
|
||||
|
||||
ARROW_EXPORT
|
||||
Status ValidateArrayFull(const ArrayData& data);
|
||||
|
||||
ARROW_EXPORT
|
||||
Status ValidateUTF8(const Array& array);
|
||||
|
||||
ARROW_EXPORT
|
||||
Status ValidateUTF8(const ArrayData& data);
|
||||
|
||||
} // namespace internal
|
||||
} // namespace arrow
|
||||
510
venv/lib/python3.9/site-packages/pyarrow/include/arrow/buffer.h
Normal file
510
venv/lib/python3.9/site-packages/pyarrow/include/arrow/buffer.h
Normal file
@@ -0,0 +1,510 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <cstring>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <string_view>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/device.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/type_fwd.h"
|
||||
#include "arrow/util/bytes_view.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// Buffer classes
|
||||
|
||||
/// \class Buffer
|
||||
/// \brief Object containing a pointer to a piece of contiguous memory with a
|
||||
/// particular size.
|
||||
///
|
||||
/// Buffers have two related notions of length: size and capacity. Size is
|
||||
/// the number of bytes that might have valid data. Capacity is the number
|
||||
/// of bytes that were allocated for the buffer in total.
|
||||
///
|
||||
/// The Buffer base class does not own its memory, but subclasses often do.
|
||||
///
|
||||
/// The following invariant is always true: Size <= Capacity
|
||||
class ARROW_EXPORT Buffer {
|
||||
public:
|
||||
/// \brief Construct from buffer and size without copying memory
|
||||
///
|
||||
/// \param[in] data a memory buffer
|
||||
/// \param[in] size buffer size
|
||||
///
|
||||
/// \note The passed memory must be kept alive through some other means
|
||||
Buffer(const uint8_t* data, int64_t size)
|
||||
: is_mutable_(false), is_cpu_(true), data_(data), size_(size), capacity_(size) {
|
||||
SetMemoryManager(default_cpu_memory_manager());
|
||||
}
|
||||
|
||||
Buffer(const uint8_t* data, int64_t size, std::shared_ptr<MemoryManager> mm,
|
||||
std::shared_ptr<Buffer> parent = NULLPTR)
|
||||
: is_mutable_(false), data_(data), size_(size), capacity_(size), parent_(parent) {
|
||||
SetMemoryManager(std::move(mm));
|
||||
}
|
||||
|
||||
Buffer(uintptr_t address, int64_t size, std::shared_ptr<MemoryManager> mm,
|
||||
std::shared_ptr<Buffer> parent = NULLPTR)
|
||||
: Buffer(reinterpret_cast<const uint8_t*>(address), size, std::move(mm),
|
||||
std::move(parent)) {}
|
||||
|
||||
/// \brief Construct from string_view without copying memory
|
||||
///
|
||||
/// \param[in] data a string_view object
|
||||
///
|
||||
/// \note The memory viewed by data must not be deallocated in the lifetime of the
|
||||
/// Buffer; temporary rvalue strings must be stored in an lvalue somewhere
|
||||
explicit Buffer(std::string_view data)
|
||||
: Buffer(reinterpret_cast<const uint8_t*>(data.data()),
|
||||
static_cast<int64_t>(data.size())) {}
|
||||
|
||||
virtual ~Buffer() = default;
|
||||
|
||||
/// An offset into data that is owned by another buffer, but we want to be
|
||||
/// able to retain a valid pointer to it even after other shared_ptr's to the
|
||||
/// parent buffer have been destroyed
|
||||
///
|
||||
/// This method makes no assertions about alignment or padding of the buffer but
|
||||
/// in general we expected buffers to be aligned and padded to 64 bytes. In the future
|
||||
/// we might add utility methods to help determine if a buffer satisfies this contract.
|
||||
Buffer(const std::shared_ptr<Buffer>& parent, const int64_t offset, const int64_t size)
|
||||
: Buffer(parent->data_ + offset, size) {
|
||||
parent_ = parent;
|
||||
SetMemoryManager(parent->memory_manager_);
|
||||
}
|
||||
|
||||
uint8_t operator[](std::size_t i) const { return data_[i]; }
|
||||
|
||||
/// \brief Construct a new std::string with a hexadecimal representation of the buffer.
|
||||
/// \return std::string
|
||||
std::string ToHexString();
|
||||
|
||||
/// Return true if both buffers are the same size and contain the same bytes
|
||||
/// up to the number of compared bytes
|
||||
bool Equals(const Buffer& other, int64_t nbytes) const;
|
||||
|
||||
/// Return true if both buffers are the same size and contain the same bytes
|
||||
bool Equals(const Buffer& other) const;
|
||||
|
||||
/// Copy a section of the buffer into a new Buffer.
|
||||
Result<std::shared_ptr<Buffer>> CopySlice(
|
||||
const int64_t start, const int64_t nbytes,
|
||||
MemoryPool* pool = default_memory_pool()) const;
|
||||
|
||||
/// Zero bytes in padding, i.e. bytes between size_ and capacity_.
|
||||
void ZeroPadding() {
|
||||
#ifndef NDEBUG
|
||||
CheckMutable();
|
||||
#endif
|
||||
// A zero-capacity buffer can have a null data pointer
|
||||
if (capacity_ != 0) {
|
||||
memset(mutable_data() + size_, 0, static_cast<size_t>(capacity_ - size_));
|
||||
}
|
||||
}
|
||||
|
||||
/// \brief Construct an immutable buffer that takes ownership of the contents
|
||||
/// of an std::string (without copying it).
|
||||
///
|
||||
/// \param[in] data a string to own
|
||||
/// \return a new Buffer instance
|
||||
static std::shared_ptr<Buffer> FromString(std::string data);
|
||||
|
||||
/// \brief Create buffer referencing typed memory with some length without
|
||||
/// copying
|
||||
/// \param[in] data the typed memory as C array
|
||||
/// \param[in] length the number of values in the array
|
||||
/// \return a new shared_ptr<Buffer>
|
||||
template <typename T, typename SizeType = int64_t>
|
||||
static std::shared_ptr<Buffer> Wrap(const T* data, SizeType length) {
|
||||
return std::make_shared<Buffer>(reinterpret_cast<const uint8_t*>(data),
|
||||
static_cast<int64_t>(sizeof(T) * length));
|
||||
}
|
||||
|
||||
/// \brief Create buffer referencing std::vector with some length without
|
||||
/// copying
|
||||
/// \param[in] data the vector to be referenced. If this vector is changed,
|
||||
/// the buffer may become invalid
|
||||
/// \return a new shared_ptr<Buffer>
|
||||
template <typename T>
|
||||
static std::shared_ptr<Buffer> Wrap(const std::vector<T>& data) {
|
||||
return std::make_shared<Buffer>(reinterpret_cast<const uint8_t*>(data.data()),
|
||||
static_cast<int64_t>(sizeof(T) * data.size()));
|
||||
}
|
||||
|
||||
/// \brief Copy buffer contents into a new std::string
|
||||
/// \return std::string
|
||||
/// \note Can throw std::bad_alloc if buffer is large
|
||||
std::string ToString() const;
|
||||
|
||||
/// \brief View buffer contents as a std::string_view
|
||||
/// \return std::string_view
|
||||
explicit operator std::string_view() const {
|
||||
return std::string_view(reinterpret_cast<const char*>(data_), size_);
|
||||
}
|
||||
|
||||
/// \brief View buffer contents as a util::bytes_view
|
||||
/// \return util::bytes_view
|
||||
explicit operator util::bytes_view() const { return util::bytes_view(data_, size_); }
|
||||
|
||||
/// \brief Return a pointer to the buffer's data
|
||||
///
|
||||
/// The buffer has to be a CPU buffer (`is_cpu()` is true).
|
||||
/// Otherwise, an assertion may be thrown or a null pointer may be returned.
|
||||
///
|
||||
/// To get the buffer's data address regardless of its device, call `address()`.
|
||||
const uint8_t* data() const {
|
||||
#ifndef NDEBUG
|
||||
CheckCPU();
|
||||
#endif
|
||||
return ARROW_PREDICT_TRUE(is_cpu_) ? data_ : NULLPTR;
|
||||
}
|
||||
|
||||
/// \brief Return a writable pointer to the buffer's data
|
||||
///
|
||||
/// The buffer has to be a mutable CPU buffer (`is_cpu()` and `is_mutable()`
|
||||
/// are true). Otherwise, an assertion may be thrown or a null pointer may
|
||||
/// be returned.
|
||||
///
|
||||
/// To get the buffer's mutable data address regardless of its device, call
|
||||
/// `mutable_address()`.
|
||||
uint8_t* mutable_data() {
|
||||
#ifndef NDEBUG
|
||||
CheckCPU();
|
||||
CheckMutable();
|
||||
#endif
|
||||
return ARROW_PREDICT_TRUE(is_cpu_ && is_mutable_) ? const_cast<uint8_t*>(data_)
|
||||
: NULLPTR;
|
||||
}
|
||||
|
||||
/// \brief Return the device address of the buffer's data
|
||||
uintptr_t address() const { return reinterpret_cast<uintptr_t>(data_); }
|
||||
|
||||
/// \brief Return a writable device address to the buffer's data
|
||||
///
|
||||
/// The buffer has to be a mutable buffer (`is_mutable()` is true).
|
||||
/// Otherwise, an assertion may be thrown or 0 may be returned.
|
||||
uintptr_t mutable_address() const {
|
||||
#ifndef NDEBUG
|
||||
CheckMutable();
|
||||
#endif
|
||||
return ARROW_PREDICT_TRUE(is_mutable_) ? reinterpret_cast<uintptr_t>(data_) : 0;
|
||||
}
|
||||
|
||||
/// \brief Return the buffer's size in bytes
|
||||
int64_t size() const { return size_; }
|
||||
|
||||
/// \brief Return the buffer's capacity (number of allocated bytes)
|
||||
int64_t capacity() const { return capacity_; }
|
||||
|
||||
/// \brief Whether the buffer is directly CPU-accessible
|
||||
///
|
||||
/// If this function returns true, you can read directly from the buffer's
|
||||
/// `data()` pointer. Otherwise, you'll have to `View()` or `Copy()` it.
|
||||
bool is_cpu() const { return is_cpu_; }
|
||||
|
||||
/// \brief Whether the buffer is mutable
|
||||
///
|
||||
/// If this function returns true, you are allowed to modify buffer contents
|
||||
/// using the pointer returned by `mutable_data()` or `mutable_address()`.
|
||||
bool is_mutable() const { return is_mutable_; }
|
||||
|
||||
const std::shared_ptr<Device>& device() const { return memory_manager_->device(); }
|
||||
|
||||
const std::shared_ptr<MemoryManager>& memory_manager() const { return memory_manager_; }
|
||||
|
||||
std::shared_ptr<Buffer> parent() const { return parent_; }
|
||||
|
||||
/// \brief Get a RandomAccessFile for reading a buffer
|
||||
///
|
||||
/// The returned file object reads from this buffer's underlying memory.
|
||||
static Result<std::shared_ptr<io::RandomAccessFile>> GetReader(std::shared_ptr<Buffer>);
|
||||
|
||||
/// \brief Get a OutputStream for writing to a buffer
|
||||
///
|
||||
/// The buffer must be mutable. The returned stream object writes into the buffer's
|
||||
/// underlying memory (but it won't resize it).
|
||||
static Result<std::shared_ptr<io::OutputStream>> GetWriter(std::shared_ptr<Buffer>);
|
||||
|
||||
/// \brief Copy buffer
|
||||
///
|
||||
/// The buffer contents will be copied into a new buffer allocated by the
|
||||
/// given MemoryManager. This function supports cross-device copies.
|
||||
static Result<std::shared_ptr<Buffer>> Copy(std::shared_ptr<Buffer> source,
|
||||
const std::shared_ptr<MemoryManager>& to);
|
||||
|
||||
/// \brief Copy a non-owned buffer
|
||||
///
|
||||
/// This is useful for cases where the source memory area is externally managed
|
||||
/// (its lifetime not tied to the source Buffer), otherwise please use Copy().
|
||||
static Result<std::unique_ptr<Buffer>> CopyNonOwned(
|
||||
const Buffer& source, const std::shared_ptr<MemoryManager>& to);
|
||||
|
||||
/// \brief View buffer
|
||||
///
|
||||
/// Return a Buffer that reflects this buffer, seen potentially from another
|
||||
/// device, without making an explicit copy of the contents. The underlying
|
||||
/// mechanism is typically implemented by the kernel or device driver, and may
|
||||
/// involve lazy caching of parts of the buffer contents on the destination
|
||||
/// device's memory.
|
||||
///
|
||||
/// If a non-copy view is unsupported for the buffer on the given device,
|
||||
/// nullptr is returned. An error can be returned if some low-level
|
||||
/// operation fails (such as an out-of-memory condition).
|
||||
static Result<std::shared_ptr<Buffer>> View(std::shared_ptr<Buffer> source,
|
||||
const std::shared_ptr<MemoryManager>& to);
|
||||
|
||||
/// \brief View or copy buffer
|
||||
///
|
||||
/// Try to view buffer contents on the given MemoryManager's device, but
|
||||
/// fall back to copying if a no-copy view isn't supported.
|
||||
static Result<std::shared_ptr<Buffer>> ViewOrCopy(
|
||||
std::shared_ptr<Buffer> source, const std::shared_ptr<MemoryManager>& to);
|
||||
|
||||
protected:
|
||||
bool is_mutable_;
|
||||
bool is_cpu_;
|
||||
const uint8_t* data_;
|
||||
int64_t size_;
|
||||
int64_t capacity_;
|
||||
|
||||
// null by default, but may be set
|
||||
std::shared_ptr<Buffer> parent_;
|
||||
|
||||
private:
|
||||
// private so that subclasses are forced to call SetMemoryManager()
|
||||
std::shared_ptr<MemoryManager> memory_manager_;
|
||||
|
||||
protected:
|
||||
void CheckMutable() const;
|
||||
void CheckCPU() const;
|
||||
|
||||
void SetMemoryManager(std::shared_ptr<MemoryManager> mm) {
|
||||
memory_manager_ = std::move(mm);
|
||||
is_cpu_ = memory_manager_->is_cpu();
|
||||
}
|
||||
|
||||
private:
|
||||
Buffer() = delete;
|
||||
ARROW_DISALLOW_COPY_AND_ASSIGN(Buffer);
|
||||
};
|
||||
|
||||
/// \defgroup buffer-slicing-functions Functions for slicing buffers
|
||||
///
|
||||
/// @{
|
||||
|
||||
/// \brief Construct a view on a buffer at the given offset and length.
|
||||
///
|
||||
/// This function cannot fail and does not check for errors (except in debug builds)
|
||||
static inline std::shared_ptr<Buffer> SliceBuffer(const std::shared_ptr<Buffer>& buffer,
|
||||
const int64_t offset,
|
||||
const int64_t length) {
|
||||
return std::make_shared<Buffer>(buffer, offset, length);
|
||||
}
|
||||
|
||||
/// \brief Construct a view on a buffer at the given offset, up to the buffer's end.
|
||||
///
|
||||
/// This function cannot fail and does not check for errors (except in debug builds)
|
||||
static inline std::shared_ptr<Buffer> SliceBuffer(const std::shared_ptr<Buffer>& buffer,
|
||||
const int64_t offset) {
|
||||
int64_t length = buffer->size() - offset;
|
||||
return SliceBuffer(buffer, offset, length);
|
||||
}
|
||||
|
||||
/// \brief Input-checking version of SliceBuffer
|
||||
///
|
||||
/// An Invalid Status is returned if the requested slice falls out of bounds.
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Buffer>> SliceBufferSafe(const std::shared_ptr<Buffer>& buffer,
|
||||
int64_t offset);
|
||||
/// \brief Input-checking version of SliceBuffer
|
||||
///
|
||||
/// An Invalid Status is returned if the requested slice falls out of bounds.
|
||||
/// Note that unlike SliceBuffer, `length` isn't clamped to the available buffer size.
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Buffer>> SliceBufferSafe(const std::shared_ptr<Buffer>& buffer,
|
||||
int64_t offset, int64_t length);
|
||||
|
||||
/// \brief Like SliceBuffer, but construct a mutable buffer slice.
|
||||
///
|
||||
/// If the parent buffer is not mutable, behavior is undefined (it may abort
|
||||
/// in debug builds).
|
||||
ARROW_EXPORT
|
||||
std::shared_ptr<Buffer> SliceMutableBuffer(const std::shared_ptr<Buffer>& buffer,
|
||||
const int64_t offset, const int64_t length);
|
||||
|
||||
/// \brief Like SliceBuffer, but construct a mutable buffer slice.
|
||||
///
|
||||
/// If the parent buffer is not mutable, behavior is undefined (it may abort
|
||||
/// in debug builds).
|
||||
static inline std::shared_ptr<Buffer> SliceMutableBuffer(
|
||||
const std::shared_ptr<Buffer>& buffer, const int64_t offset) {
|
||||
int64_t length = buffer->size() - offset;
|
||||
return SliceMutableBuffer(buffer, offset, length);
|
||||
}
|
||||
|
||||
/// \brief Input-checking version of SliceMutableBuffer
|
||||
///
|
||||
/// An Invalid Status is returned if the requested slice falls out of bounds.
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Buffer>> SliceMutableBufferSafe(
|
||||
const std::shared_ptr<Buffer>& buffer, int64_t offset);
|
||||
/// \brief Input-checking version of SliceMutableBuffer
|
||||
///
|
||||
/// An Invalid Status is returned if the requested slice falls out of bounds.
|
||||
/// Note that unlike SliceBuffer, `length` isn't clamped to the available buffer size.
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Buffer>> SliceMutableBufferSafe(
|
||||
const std::shared_ptr<Buffer>& buffer, int64_t offset, int64_t length);
|
||||
|
||||
/// @}
|
||||
|
||||
/// \class MutableBuffer
|
||||
/// \brief A Buffer whose contents can be mutated. May or may not own its data.
|
||||
class ARROW_EXPORT MutableBuffer : public Buffer {
|
||||
public:
|
||||
MutableBuffer(uint8_t* data, const int64_t size) : Buffer(data, size) {
|
||||
is_mutable_ = true;
|
||||
}
|
||||
|
||||
MutableBuffer(uint8_t* data, const int64_t size, std::shared_ptr<MemoryManager> mm)
|
||||
: Buffer(data, size, std::move(mm)) {
|
||||
is_mutable_ = true;
|
||||
}
|
||||
|
||||
MutableBuffer(const std::shared_ptr<Buffer>& parent, const int64_t offset,
|
||||
const int64_t size);
|
||||
|
||||
/// \brief Create buffer referencing typed memory with some length
|
||||
/// \param[in] data the typed memory as C array
|
||||
/// \param[in] length the number of values in the array
|
||||
/// \return a new shared_ptr<Buffer>
|
||||
template <typename T, typename SizeType = int64_t>
|
||||
static std::shared_ptr<Buffer> Wrap(T* data, SizeType length) {
|
||||
return std::make_shared<MutableBuffer>(reinterpret_cast<uint8_t*>(data),
|
||||
static_cast<int64_t>(sizeof(T) * length));
|
||||
}
|
||||
|
||||
protected:
|
||||
MutableBuffer() : Buffer(NULLPTR, 0) {}
|
||||
};
|
||||
|
||||
/// \class ResizableBuffer
|
||||
/// \brief A mutable buffer that can be resized
|
||||
class ARROW_EXPORT ResizableBuffer : public MutableBuffer {
|
||||
public:
|
||||
/// Change buffer reported size to indicated size, allocating memory if
|
||||
/// necessary. This will ensure that the capacity of the buffer is a multiple
|
||||
/// of 64 bytes as defined in Layout.md.
|
||||
/// Consider using ZeroPadding afterwards, to conform to the Arrow layout
|
||||
/// specification.
|
||||
///
|
||||
/// @param new_size The new size for the buffer.
|
||||
/// @param shrink_to_fit Whether to shrink the capacity if new size < current size
|
||||
virtual Status Resize(const int64_t new_size, bool shrink_to_fit) = 0;
|
||||
Status Resize(const int64_t new_size) {
|
||||
return Resize(new_size, /*shrink_to_fit=*/true);
|
||||
}
|
||||
|
||||
/// Ensure that buffer has enough memory allocated to fit the indicated
|
||||
/// capacity (and meets the 64 byte padding requirement in Layout.md).
|
||||
/// It does not change buffer's reported size and doesn't zero the padding.
|
||||
virtual Status Reserve(const int64_t new_capacity) = 0;
|
||||
|
||||
template <class T>
|
||||
Status TypedResize(const int64_t new_nb_elements, bool shrink_to_fit = true) {
|
||||
return Resize(sizeof(T) * new_nb_elements, shrink_to_fit);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
Status TypedReserve(const int64_t new_nb_elements) {
|
||||
return Reserve(sizeof(T) * new_nb_elements);
|
||||
}
|
||||
|
||||
protected:
|
||||
ResizableBuffer(uint8_t* data, int64_t size) : MutableBuffer(data, size) {}
|
||||
ResizableBuffer(uint8_t* data, int64_t size, std::shared_ptr<MemoryManager> mm)
|
||||
: MutableBuffer(data, size, std::move(mm)) {}
|
||||
};
|
||||
|
||||
/// \defgroup buffer-allocation-functions Functions for allocating buffers
|
||||
///
|
||||
/// @{
|
||||
|
||||
/// \brief Allocate a fixed size mutable buffer from a memory pool, zero its padding.
|
||||
///
|
||||
/// \param[in] size size of buffer to allocate
|
||||
/// \param[in] pool a memory pool
|
||||
ARROW_EXPORT
|
||||
Result<std::unique_ptr<Buffer>> AllocateBuffer(const int64_t size,
|
||||
MemoryPool* pool = NULLPTR);
|
||||
ARROW_EXPORT
|
||||
Result<std::unique_ptr<Buffer>> AllocateBuffer(const int64_t size, int64_t alignment,
|
||||
MemoryPool* pool = NULLPTR);
|
||||
|
||||
/// \brief Allocate a resizeable buffer from a memory pool, zero its padding.
|
||||
///
|
||||
/// \param[in] size size of buffer to allocate
|
||||
/// \param[in] pool a memory pool
|
||||
ARROW_EXPORT
|
||||
Result<std::unique_ptr<ResizableBuffer>> AllocateResizableBuffer(
|
||||
const int64_t size, MemoryPool* pool = NULLPTR);
|
||||
ARROW_EXPORT
|
||||
Result<std::unique_ptr<ResizableBuffer>> AllocateResizableBuffer(
|
||||
const int64_t size, const int64_t alignment, MemoryPool* pool = NULLPTR);
|
||||
|
||||
/// \brief Allocate a bitmap buffer from a memory pool
|
||||
/// no guarantee on values is provided.
|
||||
///
|
||||
/// \param[in] length size in bits of bitmap to allocate
|
||||
/// \param[in] pool memory pool to allocate memory from
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Buffer>> AllocateBitmap(int64_t length,
|
||||
MemoryPool* pool = NULLPTR);
|
||||
|
||||
/// \brief Allocate a zero-initialized bitmap buffer from a memory pool
|
||||
///
|
||||
/// \param[in] length size in bits of bitmap to allocate
|
||||
/// \param[in] pool memory pool to allocate memory from
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Buffer>> AllocateEmptyBitmap(int64_t length,
|
||||
MemoryPool* pool = NULLPTR);
|
||||
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Buffer>> AllocateEmptyBitmap(int64_t length, int64_t alignment,
|
||||
MemoryPool* pool = NULLPTR);
|
||||
|
||||
/// \brief Concatenate multiple buffers into a single buffer
|
||||
///
|
||||
/// \param[in] buffers to be concatenated
|
||||
/// \param[in] pool memory pool to allocate the new buffer from
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Buffer>> ConcatenateBuffers(const BufferVector& buffers,
|
||||
MemoryPool* pool = NULLPTR);
|
||||
|
||||
/// @}
|
||||
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,467 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstdint>
|
||||
#include <cstring>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
|
||||
#include "arrow/buffer.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/util/bit_util.h"
|
||||
#include "arrow/util/bitmap_generate.h"
|
||||
#include "arrow/util/bitmap_ops.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/ubsan.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// Buffer builder classes
|
||||
|
||||
/// \class BufferBuilder
|
||||
/// \brief A class for incrementally building a contiguous chunk of in-memory
|
||||
/// data
|
||||
class ARROW_EXPORT BufferBuilder {
|
||||
public:
|
||||
explicit BufferBuilder(MemoryPool* pool = default_memory_pool(),
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: pool_(pool),
|
||||
data_(/*ensure never null to make ubsan happy and avoid check penalties below*/
|
||||
util::MakeNonNull<uint8_t>()),
|
||||
capacity_(0),
|
||||
size_(0),
|
||||
alignment_(alignment) {}
|
||||
|
||||
/// \brief Constructs new Builder that will start using
|
||||
/// the provided buffer until Finish/Reset are called.
|
||||
/// The buffer is not resized.
|
||||
explicit BufferBuilder(std::shared_ptr<ResizableBuffer> buffer,
|
||||
MemoryPool* pool = default_memory_pool(),
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: buffer_(std::move(buffer)),
|
||||
pool_(pool),
|
||||
data_(buffer_->mutable_data()),
|
||||
capacity_(buffer_->capacity()),
|
||||
size_(buffer_->size()),
|
||||
alignment_(alignment) {}
|
||||
|
||||
/// \brief Resize the buffer to the nearest multiple of 64 bytes
|
||||
///
|
||||
/// \param new_capacity the new capacity of the of the builder. Will be
|
||||
/// rounded up to a multiple of 64 bytes for padding
|
||||
/// \param shrink_to_fit if new capacity is smaller than the existing,
|
||||
/// reallocate internal buffer. Set to false to avoid reallocations when
|
||||
/// shrinking the builder.
|
||||
/// \return Status
|
||||
Status Resize(const int64_t new_capacity, bool shrink_to_fit = true) {
|
||||
if (buffer_ == NULLPTR) {
|
||||
ARROW_ASSIGN_OR_RAISE(buffer_,
|
||||
AllocateResizableBuffer(new_capacity, alignment_, pool_));
|
||||
} else {
|
||||
ARROW_RETURN_NOT_OK(buffer_->Resize(new_capacity, shrink_to_fit));
|
||||
}
|
||||
capacity_ = buffer_->capacity();
|
||||
data_ = buffer_->mutable_data();
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \brief Ensure that builder can accommodate the additional number of bytes
|
||||
/// without the need to perform allocations
|
||||
///
|
||||
/// \param[in] additional_bytes number of additional bytes to make space for
|
||||
/// \return Status
|
||||
Status Reserve(const int64_t additional_bytes) {
|
||||
auto min_capacity = size_ + additional_bytes;
|
||||
if (min_capacity <= capacity_) {
|
||||
return Status::OK();
|
||||
}
|
||||
return Resize(GrowByFactor(capacity_, min_capacity), false);
|
||||
}
|
||||
|
||||
/// \brief Return a capacity expanded by the desired growth factor
|
||||
static int64_t GrowByFactor(int64_t current_capacity, int64_t new_capacity) {
|
||||
// Doubling capacity except for large Reserve requests. 2x growth strategy
|
||||
// (versus 1.5x) seems to have slightly better performance when using
|
||||
// jemalloc, but significantly better performance when using the system
|
||||
// allocator. See ARROW-6450 for further discussion
|
||||
return std::max(new_capacity, current_capacity * 2);
|
||||
}
|
||||
|
||||
/// \brief Append the given data to the buffer
|
||||
///
|
||||
/// The buffer is automatically expanded if necessary.
|
||||
Status Append(const void* data, const int64_t length) {
|
||||
if (ARROW_PREDICT_FALSE(size_ + length > capacity_)) {
|
||||
ARROW_RETURN_NOT_OK(Resize(GrowByFactor(capacity_, size_ + length), false));
|
||||
}
|
||||
UnsafeAppend(data, length);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \brief Append copies of a value to the buffer
|
||||
///
|
||||
/// The buffer is automatically expanded if necessary.
|
||||
Status Append(const int64_t num_copies, uint8_t value) {
|
||||
ARROW_RETURN_NOT_OK(Reserve(num_copies));
|
||||
UnsafeAppend(num_copies, value);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Advance pointer and zero out memory
|
||||
Status Advance(const int64_t length) { return Append(length, 0); }
|
||||
|
||||
// Advance pointer, but don't allocate or zero memory
|
||||
void UnsafeAdvance(const int64_t length) { size_ += length; }
|
||||
|
||||
// Unsafe methods don't check existing size
|
||||
void UnsafeAppend(const void* data, const int64_t length) {
|
||||
memcpy(data_ + size_, data, static_cast<size_t>(length));
|
||||
size_ += length;
|
||||
}
|
||||
|
||||
void UnsafeAppend(const int64_t num_copies, uint8_t value) {
|
||||
memset(data_ + size_, value, static_cast<size_t>(num_copies));
|
||||
size_ += num_copies;
|
||||
}
|
||||
|
||||
/// \brief Return result of builder as a Buffer object.
|
||||
///
|
||||
/// The builder is reset and can be reused afterwards.
|
||||
///
|
||||
/// \param[out] out the finalized Buffer object
|
||||
/// \param shrink_to_fit if the buffer size is smaller than its capacity,
|
||||
/// reallocate to fit more tightly in memory. Set to false to avoid
|
||||
/// a reallocation, at the expense of potentially more memory consumption.
|
||||
/// \return Status
|
||||
Status Finish(std::shared_ptr<Buffer>* out, bool shrink_to_fit = true) {
|
||||
ARROW_RETURN_NOT_OK(Resize(size_, shrink_to_fit));
|
||||
if (size_ != 0) buffer_->ZeroPadding();
|
||||
*out = buffer_;
|
||||
if (*out == NULLPTR) {
|
||||
ARROW_ASSIGN_OR_RAISE(*out, AllocateBuffer(0, alignment_, pool_));
|
||||
}
|
||||
Reset();
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Result<std::shared_ptr<Buffer>> Finish(bool shrink_to_fit = true) {
|
||||
std::shared_ptr<Buffer> out;
|
||||
ARROW_RETURN_NOT_OK(Finish(&out, shrink_to_fit));
|
||||
return out;
|
||||
}
|
||||
|
||||
/// \brief Like Finish, but override the final buffer size
|
||||
///
|
||||
/// This is useful after writing data directly into the builder memory
|
||||
/// without calling the Append methods (basically, when using BufferBuilder
|
||||
/// mostly for memory allocation).
|
||||
Result<std::shared_ptr<Buffer>> FinishWithLength(int64_t final_length,
|
||||
bool shrink_to_fit = true) {
|
||||
size_ = final_length;
|
||||
return Finish(shrink_to_fit);
|
||||
}
|
||||
|
||||
void Reset() {
|
||||
buffer_ = NULLPTR;
|
||||
capacity_ = size_ = 0;
|
||||
}
|
||||
|
||||
/// \brief Set size to a smaller value without modifying builder
|
||||
/// contents. For reusable BufferBuilder classes
|
||||
/// \param[in] position must be non-negative and less than or equal
|
||||
/// to the current length()
|
||||
void Rewind(int64_t position) { size_ = position; }
|
||||
|
||||
int64_t capacity() const { return capacity_; }
|
||||
int64_t length() const { return size_; }
|
||||
const uint8_t* data() const { return data_; }
|
||||
uint8_t* mutable_data() { return data_; }
|
||||
|
||||
private:
|
||||
std::shared_ptr<ResizableBuffer> buffer_;
|
||||
MemoryPool* pool_;
|
||||
uint8_t* data_;
|
||||
int64_t capacity_;
|
||||
int64_t size_;
|
||||
int64_t alignment_;
|
||||
};
|
||||
|
||||
template <typename T, typename Enable = void>
|
||||
class TypedBufferBuilder;
|
||||
|
||||
/// \brief A BufferBuilder for building a buffer of arithmetic elements
|
||||
template <typename T>
|
||||
class TypedBufferBuilder<
|
||||
T, typename std::enable_if<std::is_arithmetic<T>::value ||
|
||||
std::is_standard_layout<T>::value>::type> {
|
||||
public:
|
||||
explicit TypedBufferBuilder(MemoryPool* pool = default_memory_pool(),
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: bytes_builder_(pool, alignment) {}
|
||||
|
||||
explicit TypedBufferBuilder(std::shared_ptr<ResizableBuffer> buffer,
|
||||
MemoryPool* pool = default_memory_pool())
|
||||
: bytes_builder_(std::move(buffer), pool) {}
|
||||
|
||||
explicit TypedBufferBuilder(BufferBuilder builder)
|
||||
: bytes_builder_(std::move(builder)) {}
|
||||
|
||||
BufferBuilder* bytes_builder() { return &bytes_builder_; }
|
||||
|
||||
Status Append(T value) {
|
||||
return bytes_builder_.Append(reinterpret_cast<uint8_t*>(&value), sizeof(T));
|
||||
}
|
||||
|
||||
Status Append(const T* values, int64_t num_elements) {
|
||||
return bytes_builder_.Append(reinterpret_cast<const uint8_t*>(values),
|
||||
num_elements * sizeof(T));
|
||||
}
|
||||
|
||||
Status Append(const int64_t num_copies, T value) {
|
||||
ARROW_RETURN_NOT_OK(Reserve(num_copies + length()));
|
||||
UnsafeAppend(num_copies, value);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
void UnsafeAppend(T value) {
|
||||
bytes_builder_.UnsafeAppend(reinterpret_cast<uint8_t*>(&value), sizeof(T));
|
||||
}
|
||||
|
||||
void UnsafeAppend(const T* values, int64_t num_elements) {
|
||||
bytes_builder_.UnsafeAppend(reinterpret_cast<const uint8_t*>(values),
|
||||
num_elements * sizeof(T));
|
||||
}
|
||||
|
||||
template <typename Iter>
|
||||
void UnsafeAppend(Iter values_begin, Iter values_end) {
|
||||
int64_t num_elements = static_cast<int64_t>(std::distance(values_begin, values_end));
|
||||
auto data = mutable_data() + length();
|
||||
bytes_builder_.UnsafeAdvance(num_elements * sizeof(T));
|
||||
std::copy(values_begin, values_end, data);
|
||||
}
|
||||
|
||||
void UnsafeAppend(const int64_t num_copies, T value) {
|
||||
auto data = mutable_data() + length();
|
||||
bytes_builder_.UnsafeAdvance(num_copies * sizeof(T));
|
||||
std::fill(data, data + num_copies, value);
|
||||
}
|
||||
|
||||
Status Resize(const int64_t new_capacity, bool shrink_to_fit = true) {
|
||||
return bytes_builder_.Resize(new_capacity * sizeof(T), shrink_to_fit);
|
||||
}
|
||||
|
||||
Status Reserve(const int64_t additional_elements) {
|
||||
return bytes_builder_.Reserve(additional_elements * sizeof(T));
|
||||
}
|
||||
|
||||
Status Advance(const int64_t length) {
|
||||
return bytes_builder_.Advance(length * sizeof(T));
|
||||
}
|
||||
|
||||
Status Finish(std::shared_ptr<Buffer>* out, bool shrink_to_fit = true) {
|
||||
return bytes_builder_.Finish(out, shrink_to_fit);
|
||||
}
|
||||
|
||||
Result<std::shared_ptr<Buffer>> Finish(bool shrink_to_fit = true) {
|
||||
std::shared_ptr<Buffer> out;
|
||||
ARROW_RETURN_NOT_OK(Finish(&out, shrink_to_fit));
|
||||
return out;
|
||||
}
|
||||
|
||||
/// \brief Like Finish, but override the final buffer size
|
||||
///
|
||||
/// This is useful after writing data directly into the builder memory
|
||||
/// without calling the Append methods (basically, when using TypedBufferBuilder
|
||||
/// only for memory allocation).
|
||||
Result<std::shared_ptr<Buffer>> FinishWithLength(int64_t final_length,
|
||||
bool shrink_to_fit = true) {
|
||||
return bytes_builder_.FinishWithLength(final_length * sizeof(T), shrink_to_fit);
|
||||
}
|
||||
|
||||
void Reset() { bytes_builder_.Reset(); }
|
||||
|
||||
int64_t length() const { return bytes_builder_.length() / sizeof(T); }
|
||||
int64_t capacity() const { return bytes_builder_.capacity() / sizeof(T); }
|
||||
const T* data() const { return reinterpret_cast<const T*>(bytes_builder_.data()); }
|
||||
T* mutable_data() { return reinterpret_cast<T*>(bytes_builder_.mutable_data()); }
|
||||
|
||||
private:
|
||||
BufferBuilder bytes_builder_;
|
||||
};
|
||||
|
||||
/// \brief A BufferBuilder for building a buffer containing a bitmap
|
||||
template <>
|
||||
class TypedBufferBuilder<bool> {
|
||||
public:
|
||||
explicit TypedBufferBuilder(MemoryPool* pool = default_memory_pool(),
|
||||
int64_t alignment = kDefaultBufferAlignment)
|
||||
: bytes_builder_(pool, alignment) {}
|
||||
|
||||
explicit TypedBufferBuilder(BufferBuilder builder)
|
||||
: bytes_builder_(std::move(builder)) {}
|
||||
|
||||
BufferBuilder* bytes_builder() { return &bytes_builder_; }
|
||||
|
||||
Status Append(bool value) {
|
||||
ARROW_RETURN_NOT_OK(Reserve(1));
|
||||
UnsafeAppend(value);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status Append(const uint8_t* valid_bytes, int64_t num_elements) {
|
||||
ARROW_RETURN_NOT_OK(Reserve(num_elements));
|
||||
UnsafeAppend(valid_bytes, num_elements);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status Append(const int64_t num_copies, bool value) {
|
||||
ARROW_RETURN_NOT_OK(Reserve(num_copies));
|
||||
UnsafeAppend(num_copies, value);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
void UnsafeAppend(bool value) {
|
||||
bit_util::SetBitTo(mutable_data(), bit_length_, value);
|
||||
if (!value) {
|
||||
++false_count_;
|
||||
}
|
||||
++bit_length_;
|
||||
}
|
||||
|
||||
/// \brief Append bits from an array of bytes (one value per byte)
|
||||
void UnsafeAppend(const uint8_t* bytes, int64_t num_elements) {
|
||||
if (num_elements == 0) return;
|
||||
int64_t i = 0;
|
||||
internal::GenerateBitsUnrolled(mutable_data(), bit_length_, num_elements, [&] {
|
||||
bool value = bytes[i++];
|
||||
false_count_ += !value;
|
||||
return value;
|
||||
});
|
||||
bit_length_ += num_elements;
|
||||
}
|
||||
|
||||
/// \brief Append bits from a packed bitmap
|
||||
void UnsafeAppend(const uint8_t* bitmap, int64_t offset, int64_t num_elements) {
|
||||
if (num_elements == 0) return;
|
||||
internal::CopyBitmap(bitmap, offset, num_elements, mutable_data(), bit_length_);
|
||||
false_count_ += num_elements - internal::CountSetBits(bitmap, offset, num_elements);
|
||||
bit_length_ += num_elements;
|
||||
}
|
||||
|
||||
void UnsafeAppend(const int64_t num_copies, bool value) {
|
||||
bit_util::SetBitsTo(mutable_data(), bit_length_, num_copies, value);
|
||||
false_count_ += num_copies * !value;
|
||||
bit_length_ += num_copies;
|
||||
}
|
||||
|
||||
template <bool count_falses, typename Generator>
|
||||
void UnsafeAppend(const int64_t num_elements, Generator&& gen) {
|
||||
if (num_elements == 0) return;
|
||||
|
||||
if (count_falses) {
|
||||
internal::GenerateBitsUnrolled(mutable_data(), bit_length_, num_elements, [&] {
|
||||
bool value = gen();
|
||||
false_count_ += !value;
|
||||
return value;
|
||||
});
|
||||
} else {
|
||||
internal::GenerateBitsUnrolled(mutable_data(), bit_length_, num_elements,
|
||||
std::forward<Generator>(gen));
|
||||
}
|
||||
bit_length_ += num_elements;
|
||||
}
|
||||
|
||||
Status Resize(const int64_t new_capacity, bool shrink_to_fit = true) {
|
||||
const int64_t old_byte_capacity = bytes_builder_.capacity();
|
||||
ARROW_RETURN_NOT_OK(
|
||||
bytes_builder_.Resize(bit_util::BytesForBits(new_capacity), shrink_to_fit));
|
||||
// Resize() may have chosen a larger capacity (e.g. for padding),
|
||||
// so ask it again before calling memset().
|
||||
const int64_t new_byte_capacity = bytes_builder_.capacity();
|
||||
if (new_byte_capacity > old_byte_capacity) {
|
||||
// The additional buffer space is 0-initialized for convenience,
|
||||
// so that other methods can simply bump the length.
|
||||
memset(mutable_data() + old_byte_capacity, 0,
|
||||
static_cast<size_t>(new_byte_capacity - old_byte_capacity));
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status Reserve(const int64_t additional_elements) {
|
||||
return Resize(
|
||||
BufferBuilder::GrowByFactor(bit_length_, bit_length_ + additional_elements),
|
||||
false);
|
||||
}
|
||||
|
||||
Status Advance(const int64_t length) {
|
||||
ARROW_RETURN_NOT_OK(Reserve(length));
|
||||
bit_length_ += length;
|
||||
false_count_ += length;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status Finish(std::shared_ptr<Buffer>* out, bool shrink_to_fit = true) {
|
||||
// set bytes_builder_.size_ == byte size of data
|
||||
bytes_builder_.UnsafeAdvance(bit_util::BytesForBits(bit_length_) -
|
||||
bytes_builder_.length());
|
||||
bit_length_ = false_count_ = 0;
|
||||
return bytes_builder_.Finish(out, shrink_to_fit);
|
||||
}
|
||||
|
||||
Result<std::shared_ptr<Buffer>> Finish(bool shrink_to_fit = true) {
|
||||
std::shared_ptr<Buffer> out;
|
||||
ARROW_RETURN_NOT_OK(Finish(&out, shrink_to_fit));
|
||||
return out;
|
||||
}
|
||||
|
||||
/// \brief Like Finish, but override the final buffer size
|
||||
///
|
||||
/// This is useful after writing data directly into the builder memory
|
||||
/// without calling the Append methods (basically, when using TypedBufferBuilder
|
||||
/// only for memory allocation).
|
||||
Result<std::shared_ptr<Buffer>> FinishWithLength(int64_t final_length,
|
||||
bool shrink_to_fit = true) {
|
||||
const auto final_byte_length = bit_util::BytesForBits(final_length);
|
||||
bytes_builder_.UnsafeAdvance(final_byte_length - bytes_builder_.length());
|
||||
bit_length_ = false_count_ = 0;
|
||||
return bytes_builder_.FinishWithLength(final_byte_length, shrink_to_fit);
|
||||
}
|
||||
|
||||
void Reset() {
|
||||
bytes_builder_.Reset();
|
||||
bit_length_ = false_count_ = 0;
|
||||
}
|
||||
|
||||
int64_t length() const { return bit_length_; }
|
||||
int64_t capacity() const { return bytes_builder_.capacity() * 8; }
|
||||
const uint8_t* data() const { return bytes_builder_.data(); }
|
||||
uint8_t* mutable_data() { return bytes_builder_.mutable_data(); }
|
||||
int64_t false_count() const { return false_count_; }
|
||||
|
||||
private:
|
||||
BufferBuilder bytes_builder_;
|
||||
int64_t bit_length_ = 0;
|
||||
int64_t false_count_ = 0;
|
||||
};
|
||||
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,32 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
|
||||
#include "arrow/array/builder_adaptive.h" // IWYU pragma: keep
|
||||
#include "arrow/array/builder_base.h" // IWYU pragma: keep
|
||||
#include "arrow/array/builder_binary.h" // IWYU pragma: keep
|
||||
#include "arrow/array/builder_decimal.h" // IWYU pragma: keep
|
||||
#include "arrow/array/builder_dict.h" // IWYU pragma: keep
|
||||
#include "arrow/array/builder_nested.h" // IWYU pragma: keep
|
||||
#include "arrow/array/builder_primitive.h" // IWYU pragma: keep
|
||||
#include "arrow/array/builder_time.h" // IWYU pragma: keep
|
||||
#include "arrow/array/builder_union.h" // IWYU pragma: keep
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
111
venv/lib/python3.9/site-packages/pyarrow/include/arrow/c/abi.h
Normal file
111
venv/lib/python3.9/site-packages/pyarrow/include/arrow/c/abi.h
Normal file
@@ -0,0 +1,111 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#ifndef ARROW_C_DATA_INTERFACE
|
||||
#define ARROW_C_DATA_INTERFACE
|
||||
|
||||
#define ARROW_FLAG_DICTIONARY_ORDERED 1
|
||||
#define ARROW_FLAG_NULLABLE 2
|
||||
#define ARROW_FLAG_MAP_KEYS_SORTED 4
|
||||
|
||||
struct ArrowSchema {
|
||||
// Array type description
|
||||
const char* format;
|
||||
const char* name;
|
||||
const char* metadata;
|
||||
int64_t flags;
|
||||
int64_t n_children;
|
||||
struct ArrowSchema** children;
|
||||
struct ArrowSchema* dictionary;
|
||||
|
||||
// Release callback
|
||||
void (*release)(struct ArrowSchema*);
|
||||
// Opaque producer-specific data
|
||||
void* private_data;
|
||||
};
|
||||
|
||||
struct ArrowArray {
|
||||
// Array data description
|
||||
int64_t length;
|
||||
int64_t null_count;
|
||||
int64_t offset;
|
||||
int64_t n_buffers;
|
||||
int64_t n_children;
|
||||
const void** buffers;
|
||||
struct ArrowArray** children;
|
||||
struct ArrowArray* dictionary;
|
||||
|
||||
// Release callback
|
||||
void (*release)(struct ArrowArray*);
|
||||
// Opaque producer-specific data
|
||||
void* private_data;
|
||||
};
|
||||
|
||||
#endif // ARROW_C_DATA_INTERFACE
|
||||
|
||||
#ifndef ARROW_C_STREAM_INTERFACE
|
||||
#define ARROW_C_STREAM_INTERFACE
|
||||
|
||||
struct ArrowArrayStream {
|
||||
// Callback to get the stream type
|
||||
// (will be the same for all arrays in the stream).
|
||||
//
|
||||
// Return value: 0 if successful, an `errno`-compatible error code otherwise.
|
||||
//
|
||||
// If successful, the ArrowSchema must be released independently from the stream.
|
||||
int (*get_schema)(struct ArrowArrayStream*, struct ArrowSchema* out);
|
||||
|
||||
// Callback to get the next array
|
||||
// (if no error and the array is released, the stream has ended)
|
||||
//
|
||||
// Return value: 0 if successful, an `errno`-compatible error code otherwise.
|
||||
//
|
||||
// If successful, the ArrowArray must be released independently from the stream.
|
||||
int (*get_next)(struct ArrowArrayStream*, struct ArrowArray* out);
|
||||
|
||||
// Callback to get optional detailed error information.
|
||||
// This must only be called if the last stream operation failed
|
||||
// with a non-0 return code.
|
||||
//
|
||||
// Return value: pointer to a null-terminated character array describing
|
||||
// the last error, or NULL if no description is available.
|
||||
//
|
||||
// The returned pointer is only valid until the next operation on this stream
|
||||
// (including release).
|
||||
const char* (*get_last_error)(struct ArrowArrayStream*);
|
||||
|
||||
// Release callback: release the stream's own resources.
|
||||
// Note that arrays returned by `get_next` must be individually released.
|
||||
void (*release)(struct ArrowArrayStream*);
|
||||
|
||||
// Opaque producer-specific data
|
||||
void* private_data;
|
||||
};
|
||||
|
||||
#endif // ARROW_C_STREAM_INTERFACE
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
@@ -0,0 +1,197 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
|
||||
#include "arrow/c/abi.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/type_fwd.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
/// \defgroup c-data-interface Functions for working with the C data interface.
|
||||
///
|
||||
/// @{
|
||||
|
||||
/// \brief Export C++ DataType using the C data interface format.
|
||||
///
|
||||
/// The root type is considered to have empty name and metadata.
|
||||
/// If you want the root type to have a name and/or metadata, pass
|
||||
/// a Field instead.
|
||||
///
|
||||
/// \param[in] type DataType object to export
|
||||
/// \param[out] out C struct where to export the datatype
|
||||
ARROW_EXPORT
|
||||
Status ExportType(const DataType& type, struct ArrowSchema* out);
|
||||
|
||||
/// \brief Export C++ Field using the C data interface format.
|
||||
///
|
||||
/// \param[in] field Field object to export
|
||||
/// \param[out] out C struct where to export the field
|
||||
ARROW_EXPORT
|
||||
Status ExportField(const Field& field, struct ArrowSchema* out);
|
||||
|
||||
/// \brief Export C++ Schema using the C data interface format.
|
||||
///
|
||||
/// \param[in] schema Schema object to export
|
||||
/// \param[out] out C struct where to export the field
|
||||
ARROW_EXPORT
|
||||
Status ExportSchema(const Schema& schema, struct ArrowSchema* out);
|
||||
|
||||
/// \brief Export C++ Array using the C data interface format.
|
||||
///
|
||||
/// The resulting ArrowArray struct keeps the array data and buffers alive
|
||||
/// until its release callback is called by the consumer.
|
||||
///
|
||||
/// \param[in] array Array object to export
|
||||
/// \param[out] out C struct where to export the array
|
||||
/// \param[out] out_schema optional C struct where to export the array type
|
||||
ARROW_EXPORT
|
||||
Status ExportArray(const Array& array, struct ArrowArray* out,
|
||||
struct ArrowSchema* out_schema = NULLPTR);
|
||||
|
||||
/// \brief Export C++ RecordBatch using the C data interface format.
|
||||
///
|
||||
/// The record batch is exported as if it were a struct array.
|
||||
/// The resulting ArrowArray struct keeps the record batch data and buffers alive
|
||||
/// until its release callback is called by the consumer.
|
||||
///
|
||||
/// \param[in] batch Record batch to export
|
||||
/// \param[out] out C struct where to export the record batch
|
||||
/// \param[out] out_schema optional C struct where to export the record batch schema
|
||||
ARROW_EXPORT
|
||||
Status ExportRecordBatch(const RecordBatch& batch, struct ArrowArray* out,
|
||||
struct ArrowSchema* out_schema = NULLPTR);
|
||||
|
||||
/// \brief Import C++ DataType from the C data interface.
|
||||
///
|
||||
/// The given ArrowSchema struct is released (as per the C data interface
|
||||
/// specification), even if this function fails.
|
||||
///
|
||||
/// \param[in,out] schema C data interface struct representing the data type
|
||||
/// \return Imported type object
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<DataType>> ImportType(struct ArrowSchema* schema);
|
||||
|
||||
/// \brief Import C++ Field from the C data interface.
|
||||
///
|
||||
/// The given ArrowSchema struct is released (as per the C data interface
|
||||
/// specification), even if this function fails.
|
||||
///
|
||||
/// \param[in,out] schema C data interface struct representing the field
|
||||
/// \return Imported field object
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Field>> ImportField(struct ArrowSchema* schema);
|
||||
|
||||
/// \brief Import C++ Schema from the C data interface.
|
||||
///
|
||||
/// The given ArrowSchema struct is released (as per the C data interface
|
||||
/// specification), even if this function fails.
|
||||
///
|
||||
/// \param[in,out] schema C data interface struct representing the field
|
||||
/// \return Imported field object
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Schema>> ImportSchema(struct ArrowSchema* schema);
|
||||
|
||||
/// \brief Import C++ array from the C data interface.
|
||||
///
|
||||
/// The ArrowArray struct has its contents moved (as per the C data interface
|
||||
/// specification) to a private object held alive by the resulting array.
|
||||
///
|
||||
/// \param[in,out] array C data interface struct holding the array data
|
||||
/// \param[in] type type of the imported array
|
||||
/// \return Imported array object
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Array>> ImportArray(struct ArrowArray* array,
|
||||
std::shared_ptr<DataType> type);
|
||||
|
||||
/// \brief Import C++ array and its type from the C data interface.
|
||||
///
|
||||
/// The ArrowArray struct has its contents moved (as per the C data interface
|
||||
/// specification) to a private object held alive by the resulting array.
|
||||
/// The ArrowSchema struct is released, even if this function fails.
|
||||
///
|
||||
/// \param[in,out] array C data interface struct holding the array data
|
||||
/// \param[in,out] type C data interface struct holding the array type
|
||||
/// \return Imported array object
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Array>> ImportArray(struct ArrowArray* array,
|
||||
struct ArrowSchema* type);
|
||||
|
||||
/// \brief Import C++ record batch from the C data interface.
|
||||
///
|
||||
/// The ArrowArray struct has its contents moved (as per the C data interface
|
||||
/// specification) to a private object held alive by the resulting record batch.
|
||||
///
|
||||
/// \param[in,out] array C data interface struct holding the record batch data
|
||||
/// \param[in] schema schema of the imported record batch
|
||||
/// \return Imported record batch object
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<RecordBatch>> ImportRecordBatch(struct ArrowArray* array,
|
||||
std::shared_ptr<Schema> schema);
|
||||
|
||||
/// \brief Import C++ record batch and its schema from the C data interface.
|
||||
///
|
||||
/// The type represented by the ArrowSchema struct must be a struct type array.
|
||||
/// The ArrowArray struct has its contents moved (as per the C data interface
|
||||
/// specification) to a private object held alive by the resulting record batch.
|
||||
/// The ArrowSchema struct is released, even if this function fails.
|
||||
///
|
||||
/// \param[in,out] array C data interface struct holding the record batch data
|
||||
/// \param[in,out] schema C data interface struct holding the record batch schema
|
||||
/// \return Imported record batch object
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<RecordBatch>> ImportRecordBatch(struct ArrowArray* array,
|
||||
struct ArrowSchema* schema);
|
||||
|
||||
/// @}
|
||||
|
||||
/// \defgroup c-stream-interface Functions for working with the C data interface.
|
||||
///
|
||||
/// @{
|
||||
|
||||
/// \brief Export C++ RecordBatchReader using the C stream interface.
|
||||
///
|
||||
/// The resulting ArrowArrayStream struct keeps the record batch reader alive
|
||||
/// until its release callback is called by the consumer.
|
||||
///
|
||||
/// \param[in] reader RecordBatchReader object to export
|
||||
/// \param[out] out C struct where to export the stream
|
||||
ARROW_EXPORT
|
||||
Status ExportRecordBatchReader(std::shared_ptr<RecordBatchReader> reader,
|
||||
struct ArrowArrayStream* out);
|
||||
|
||||
/// \brief Import C++ RecordBatchReader from the C stream interface.
|
||||
///
|
||||
/// The ArrowArrayStream struct has its contents moved to a private object
|
||||
/// held alive by the resulting record batch reader.
|
||||
///
|
||||
/// \param[in,out] stream C stream interface struct
|
||||
/// \return Imported RecordBatchReader object
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<RecordBatchReader>> ImportRecordBatchReader(
|
||||
struct ArrowArrayStream* stream);
|
||||
|
||||
/// @}
|
||||
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,117 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "arrow/c/abi.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/// Query whether the C schema is released
|
||||
inline int ArrowSchemaIsReleased(const struct ArrowSchema* schema) {
|
||||
return schema->release == NULL;
|
||||
}
|
||||
|
||||
/// Mark the C schema released (for use in release callbacks)
|
||||
inline void ArrowSchemaMarkReleased(struct ArrowSchema* schema) {
|
||||
schema->release = NULL;
|
||||
}
|
||||
|
||||
/// Move the C schema from `src` to `dest`
|
||||
///
|
||||
/// Note `dest` must *not* point to a valid schema already, otherwise there
|
||||
/// will be a memory leak.
|
||||
inline void ArrowSchemaMove(struct ArrowSchema* src, struct ArrowSchema* dest) {
|
||||
assert(dest != src);
|
||||
assert(!ArrowSchemaIsReleased(src));
|
||||
memcpy(dest, src, sizeof(struct ArrowSchema));
|
||||
ArrowSchemaMarkReleased(src);
|
||||
}
|
||||
|
||||
/// Release the C schema, if necessary, by calling its release callback
|
||||
inline void ArrowSchemaRelease(struct ArrowSchema* schema) {
|
||||
if (!ArrowSchemaIsReleased(schema)) {
|
||||
schema->release(schema);
|
||||
assert(ArrowSchemaIsReleased(schema));
|
||||
}
|
||||
}
|
||||
|
||||
/// Query whether the C array is released
|
||||
inline int ArrowArrayIsReleased(const struct ArrowArray* array) {
|
||||
return array->release == NULL;
|
||||
}
|
||||
|
||||
/// Mark the C array released (for use in release callbacks)
|
||||
inline void ArrowArrayMarkReleased(struct ArrowArray* array) { array->release = NULL; }
|
||||
|
||||
/// Move the C array from `src` to `dest`
|
||||
///
|
||||
/// Note `dest` must *not* point to a valid array already, otherwise there
|
||||
/// will be a memory leak.
|
||||
inline void ArrowArrayMove(struct ArrowArray* src, struct ArrowArray* dest) {
|
||||
assert(dest != src);
|
||||
assert(!ArrowArrayIsReleased(src));
|
||||
memcpy(dest, src, sizeof(struct ArrowArray));
|
||||
ArrowArrayMarkReleased(src);
|
||||
}
|
||||
|
||||
/// Release the C array, if necessary, by calling its release callback
|
||||
inline void ArrowArrayRelease(struct ArrowArray* array) {
|
||||
if (!ArrowArrayIsReleased(array)) {
|
||||
array->release(array);
|
||||
assert(ArrowArrayIsReleased(array));
|
||||
}
|
||||
}
|
||||
|
||||
/// Query whether the C array stream is released
|
||||
inline int ArrowArrayStreamIsReleased(const struct ArrowArrayStream* stream) {
|
||||
return stream->release == NULL;
|
||||
}
|
||||
|
||||
/// Mark the C array stream released (for use in release callbacks)
|
||||
inline void ArrowArrayStreamMarkReleased(struct ArrowArrayStream* stream) {
|
||||
stream->release = NULL;
|
||||
}
|
||||
|
||||
/// Move the C array stream from `src` to `dest`
|
||||
///
|
||||
/// Note `dest` must *not* point to a valid stream already, otherwise there
|
||||
/// will be a memory leak.
|
||||
inline void ArrowArrayStreamMove(struct ArrowArrayStream* src,
|
||||
struct ArrowArrayStream* dest) {
|
||||
assert(dest != src);
|
||||
assert(!ArrowArrayStreamIsReleased(src));
|
||||
memcpy(dest, src, sizeof(struct ArrowArrayStream));
|
||||
ArrowArrayStreamMarkReleased(src);
|
||||
}
|
||||
|
||||
/// Release the C array stream, if necessary, by calling its release callback
|
||||
inline void ArrowArrayStreamRelease(struct ArrowArrayStream* stream) {
|
||||
if (!ArrowArrayStreamIsReleased(stream)) {
|
||||
stream->release(stream);
|
||||
assert(ArrowArrayStreamIsReleased(stream));
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
@@ -0,0 +1,104 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
#include <cstdint>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/type_fwd.h"
|
||||
#include "arrow/util/macros.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace internal {
|
||||
|
||||
struct ChunkLocation {
|
||||
int64_t chunk_index, index_in_chunk;
|
||||
};
|
||||
|
||||
// An object that resolves an array chunk depending on a logical index
|
||||
struct ARROW_EXPORT ChunkResolver {
|
||||
explicit ChunkResolver(const ArrayVector& chunks);
|
||||
|
||||
explicit ChunkResolver(const std::vector<const Array*>& chunks);
|
||||
|
||||
explicit ChunkResolver(const RecordBatchVector& batches);
|
||||
|
||||
ChunkResolver(ChunkResolver&& other) noexcept
|
||||
: offsets_(std::move(other.offsets_)), cached_chunk_(other.cached_chunk_.load()) {}
|
||||
|
||||
ChunkResolver& operator=(ChunkResolver&& other) {
|
||||
offsets_ = std::move(other.offsets_);
|
||||
cached_chunk_.store(other.cached_chunk_.load());
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// \brief Return a ChunkLocation containing the chunk index and in-chunk value index of
|
||||
/// the chunked array at logical index
|
||||
inline ChunkLocation Resolve(const int64_t index) const {
|
||||
// It is common for the algorithms below to make consecutive accesses at
|
||||
// a relatively small distance from each other, hence often falling in
|
||||
// the same chunk.
|
||||
// This is trivial when merging (assuming each side of the merge uses
|
||||
// its own resolver), but also in the inner recursive invocations of
|
||||
// partitioning.
|
||||
if (offsets_.size() <= 1) {
|
||||
return {0, index};
|
||||
}
|
||||
const auto cached_chunk = cached_chunk_.load();
|
||||
const bool cache_hit =
|
||||
(index >= offsets_[cached_chunk] && index < offsets_[cached_chunk + 1]);
|
||||
if (ARROW_PREDICT_TRUE(cache_hit)) {
|
||||
return {cached_chunk, index - offsets_[cached_chunk]};
|
||||
}
|
||||
auto chunk_index = Bisect(index);
|
||||
cached_chunk_.store(chunk_index);
|
||||
return {chunk_index, index - offsets_[chunk_index]};
|
||||
}
|
||||
|
||||
protected:
|
||||
// Find the chunk index corresponding to a value index using binary search
|
||||
inline int64_t Bisect(const int64_t index) const {
|
||||
// Like std::upper_bound(), but hand-written as it can help the compiler.
|
||||
// Search [lo, lo + n)
|
||||
int64_t lo = 0;
|
||||
auto n = static_cast<int64_t>(offsets_.size());
|
||||
while (n > 1) {
|
||||
const int64_t m = n >> 1;
|
||||
const int64_t mid = lo + m;
|
||||
if (static_cast<int64_t>(index) >= offsets_[mid]) {
|
||||
lo = mid;
|
||||
n -= m;
|
||||
} else {
|
||||
n = m;
|
||||
}
|
||||
}
|
||||
return lo;
|
||||
}
|
||||
|
||||
private:
|
||||
// Collection of starting offsets used for binary search
|
||||
std::vector<int64_t> offsets_;
|
||||
|
||||
// Tracks the most recently used chunk index to allow fast
|
||||
// access for consecutive indices corresponding to the same chunk
|
||||
mutable std::atomic<int64_t> cached_chunk_;
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,273 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/chunk_resolver.h"
|
||||
#include "arrow/compare.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/type_fwd.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
class Array;
|
||||
class DataType;
|
||||
class MemoryPool;
|
||||
namespace stl {
|
||||
template <typename T, typename V>
|
||||
class ChunkedArrayIterator;
|
||||
} // namespace stl
|
||||
|
||||
/// \class ChunkedArray
|
||||
/// \brief A data structure managing a list of primitive Arrow arrays logically
|
||||
/// as one large array
|
||||
///
|
||||
/// Data chunking is treated throughout this project largely as an
|
||||
/// implementation detail for performance and memory use optimization.
|
||||
/// ChunkedArray allows Array objects to be collected and interpreted
|
||||
/// as a single logical array without requiring an expensive concatenation
|
||||
/// step.
|
||||
///
|
||||
/// In some cases, data produced by a function may exceed the capacity of an
|
||||
/// Array (like BinaryArray or StringArray) and so returning multiple Arrays is
|
||||
/// the only possibility. In these cases, we recommend returning a ChunkedArray
|
||||
/// instead of vector of Arrays or some alternative.
|
||||
///
|
||||
/// When data is processed in parallel, it may not be practical or possible to
|
||||
/// create large contiguous memory allocations and write output into them. With
|
||||
/// some data types, like binary and string types, it is not possible at all to
|
||||
/// produce non-chunked array outputs without requiring a concatenation step at
|
||||
/// the end of processing.
|
||||
///
|
||||
/// Application developers may tune chunk sizes based on analysis of
|
||||
/// performance profiles but many developer-users will not need to be
|
||||
/// especially concerned with the chunking details.
|
||||
///
|
||||
/// Preserving the chunk layout/sizes in processing steps is generally not
|
||||
/// considered to be a contract in APIs. A function may decide to alter the
|
||||
/// chunking of its result. Similarly, APIs accepting multiple ChunkedArray
|
||||
/// inputs should not expect the chunk layout to be the same in each input.
|
||||
class ARROW_EXPORT ChunkedArray {
|
||||
public:
|
||||
ChunkedArray(ChunkedArray&&) = default;
|
||||
ChunkedArray& operator=(ChunkedArray&&) = default;
|
||||
|
||||
/// \brief Construct a chunked array from a single Array
|
||||
explicit ChunkedArray(std::shared_ptr<Array> chunk)
|
||||
: ChunkedArray(ArrayVector{std::move(chunk)}) {}
|
||||
|
||||
/// \brief Construct a chunked array from a vector of arrays and an optional data type
|
||||
///
|
||||
/// The vector elements must have the same data type.
|
||||
/// If the data type is passed explicitly, the vector may be empty.
|
||||
/// If the data type is omitted, the vector must be non-empty.
|
||||
explicit ChunkedArray(ArrayVector chunks, std::shared_ptr<DataType> type = NULLPTR);
|
||||
|
||||
// \brief Constructor with basic input validation.
|
||||
static Result<std::shared_ptr<ChunkedArray>> Make(
|
||||
ArrayVector chunks, std::shared_ptr<DataType> type = NULLPTR);
|
||||
|
||||
/// \brief Create an empty ChunkedArray of a given type
|
||||
///
|
||||
/// The output ChunkedArray will have one chunk with an empty
|
||||
/// array of the given type.
|
||||
///
|
||||
/// \param[in] type the data type of the empty ChunkedArray
|
||||
/// \param[in] pool the memory pool to allocate memory from
|
||||
/// \return the resulting ChunkedArray
|
||||
static Result<std::shared_ptr<ChunkedArray>> MakeEmpty(
|
||||
std::shared_ptr<DataType> type, MemoryPool* pool = default_memory_pool());
|
||||
|
||||
/// \return the total length of the chunked array; computed on construction
|
||||
int64_t length() const { return length_; }
|
||||
|
||||
/// \return the total number of nulls among all chunks
|
||||
int64_t null_count() const { return null_count_; }
|
||||
|
||||
/// \return the total number of chunks in the chunked array
|
||||
int num_chunks() const { return static_cast<int>(chunks_.size()); }
|
||||
|
||||
/// \return chunk a particular chunk from the chunked array
|
||||
const std::shared_ptr<Array>& chunk(int i) const { return chunks_[i]; }
|
||||
|
||||
/// \return an ArrayVector of chunks
|
||||
const ArrayVector& chunks() const { return chunks_; }
|
||||
|
||||
/// \brief Construct a zero-copy slice of the chunked array with the
|
||||
/// indicated offset and length
|
||||
///
|
||||
/// \param[in] offset the position of the first element in the constructed
|
||||
/// slice
|
||||
/// \param[in] length the length of the slice. If there are not enough
|
||||
/// elements in the chunked array, the length will be adjusted accordingly
|
||||
///
|
||||
/// \return a new object wrapped in std::shared_ptr<ChunkedArray>
|
||||
std::shared_ptr<ChunkedArray> Slice(int64_t offset, int64_t length) const;
|
||||
|
||||
/// \brief Slice from offset until end of the chunked array
|
||||
std::shared_ptr<ChunkedArray> Slice(int64_t offset) const;
|
||||
|
||||
/// \brief Flatten this chunked array as a vector of chunked arrays, one
|
||||
/// for each struct field
|
||||
///
|
||||
/// \param[in] pool The pool for buffer allocations, if any
|
||||
Result<std::vector<std::shared_ptr<ChunkedArray>>> Flatten(
|
||||
MemoryPool* pool = default_memory_pool()) const;
|
||||
|
||||
/// Construct a zero-copy view of this chunked array with the given
|
||||
/// type. Calls Array::View on each constituent chunk. Always succeeds if
|
||||
/// there are zero chunks
|
||||
Result<std::shared_ptr<ChunkedArray>> View(const std::shared_ptr<DataType>& type) const;
|
||||
|
||||
/// \brief Return the type of the chunked array
|
||||
const std::shared_ptr<DataType>& type() const { return type_; }
|
||||
|
||||
/// \brief Return a Scalar containing the value of this array at index
|
||||
Result<std::shared_ptr<Scalar>> GetScalar(int64_t index) const;
|
||||
|
||||
/// \brief Determine if two chunked arrays are equal.
|
||||
///
|
||||
/// Two chunked arrays can be equal only if they have equal datatypes.
|
||||
/// However, they may be equal even if they have different chunkings.
|
||||
bool Equals(const ChunkedArray& other) const;
|
||||
/// \brief Determine if two chunked arrays are equal.
|
||||
bool Equals(const std::shared_ptr<ChunkedArray>& other) const;
|
||||
/// \brief Determine if two chunked arrays approximately equal
|
||||
bool ApproxEquals(const ChunkedArray& other,
|
||||
const EqualOptions& = EqualOptions::Defaults()) const;
|
||||
|
||||
/// \return PrettyPrint representation suitable for debugging
|
||||
std::string ToString() const;
|
||||
|
||||
/// \brief Perform cheap validation checks to determine obvious inconsistencies
|
||||
/// within the chunk array's internal data.
|
||||
///
|
||||
/// This is O(k*m) where k is the number of array descendents,
|
||||
/// and m is the number of chunks.
|
||||
///
|
||||
/// \return Status
|
||||
Status Validate() const;
|
||||
|
||||
/// \brief Perform extensive validation checks to determine inconsistencies
|
||||
/// within the chunk array's internal data.
|
||||
///
|
||||
/// This is O(k*n) where k is the number of array descendents,
|
||||
/// and n is the length in elements.
|
||||
///
|
||||
/// \return Status
|
||||
Status ValidateFull() const;
|
||||
|
||||
protected:
|
||||
ArrayVector chunks_;
|
||||
std::shared_ptr<DataType> type_;
|
||||
int64_t length_;
|
||||
int64_t null_count_;
|
||||
|
||||
private:
|
||||
template <typename T, typename V>
|
||||
friend class ::arrow::stl::ChunkedArrayIterator;
|
||||
internal::ChunkResolver chunk_resolver_;
|
||||
ARROW_DISALLOW_COPY_AND_ASSIGN(ChunkedArray);
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
/// \brief EXPERIMENTAL: Utility for incremental iteration over contiguous
|
||||
/// pieces of potentially differently-chunked ChunkedArray objects
|
||||
class ARROW_EXPORT MultipleChunkIterator {
|
||||
public:
|
||||
MultipleChunkIterator(const ChunkedArray& left, const ChunkedArray& right)
|
||||
: left_(left),
|
||||
right_(right),
|
||||
pos_(0),
|
||||
length_(left.length()),
|
||||
chunk_idx_left_(0),
|
||||
chunk_idx_right_(0),
|
||||
chunk_pos_left_(0),
|
||||
chunk_pos_right_(0) {}
|
||||
|
||||
bool Next(std::shared_ptr<Array>* next_left, std::shared_ptr<Array>* next_right);
|
||||
|
||||
int64_t position() const { return pos_; }
|
||||
|
||||
private:
|
||||
const ChunkedArray& left_;
|
||||
const ChunkedArray& right_;
|
||||
|
||||
// The amount of the entire ChunkedArray consumed
|
||||
int64_t pos_;
|
||||
|
||||
// Length of the chunked array(s)
|
||||
int64_t length_;
|
||||
|
||||
// Current left chunk
|
||||
int chunk_idx_left_;
|
||||
|
||||
// Current right chunk
|
||||
int chunk_idx_right_;
|
||||
|
||||
// Offset into the current left chunk
|
||||
int64_t chunk_pos_left_;
|
||||
|
||||
// Offset into the current right chunk
|
||||
int64_t chunk_pos_right_;
|
||||
};
|
||||
|
||||
/// \brief Evaluate binary function on two ChunkedArray objects having possibly
|
||||
/// different chunk layouts. The passed binary function / functor should have
|
||||
/// the following signature.
|
||||
///
|
||||
/// Status(const Array&, const Array&, int64_t)
|
||||
///
|
||||
/// The third argument is the absolute position relative to the start of each
|
||||
/// ChunkedArray. The function is executed against each contiguous pair of
|
||||
/// array segments, slicing if necessary.
|
||||
///
|
||||
/// For example, if two arrays have chunk sizes
|
||||
///
|
||||
/// left: [10, 10, 20]
|
||||
/// right: [15, 10, 15]
|
||||
///
|
||||
/// Then the following invocations take place (pseudocode)
|
||||
///
|
||||
/// func(left.chunk[0][0:10], right.chunk[0][0:10], 0)
|
||||
/// func(left.chunk[1][0:5], right.chunk[0][10:15], 10)
|
||||
/// func(left.chunk[1][5:10], right.chunk[1][0:5], 15)
|
||||
/// func(left.chunk[2][0:5], right.chunk[1][5:10], 20)
|
||||
/// func(left.chunk[2][5:20], right.chunk[2][:], 25)
|
||||
template <typename Action>
|
||||
Status ApplyBinaryChunked(const ChunkedArray& left, const ChunkedArray& right,
|
||||
Action&& action) {
|
||||
MultipleChunkIterator iterator(left, right);
|
||||
std::shared_ptr<Array> left_piece, right_piece;
|
||||
while (iterator.Next(&left_piece, &right_piece)) {
|
||||
ARROW_RETURN_NOT_OK(action(*left_piece, *right_piece, iterator.position()));
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
} // namespace internal
|
||||
} // namespace arrow
|
||||
145
venv/lib/python3.9/site-packages/pyarrow/include/arrow/compare.h
Normal file
145
venv/lib/python3.9/site-packages/pyarrow/include/arrow/compare.h
Normal file
@@ -0,0 +1,145 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// Functions for comparing Arrow data structures
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <iosfwd>
|
||||
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
class Array;
|
||||
class DataType;
|
||||
class Tensor;
|
||||
class SparseTensor;
|
||||
struct Scalar;
|
||||
|
||||
static constexpr double kDefaultAbsoluteTolerance = 1E-5;
|
||||
|
||||
/// A container of options for equality comparisons
|
||||
class EqualOptions {
|
||||
public:
|
||||
/// Whether or not NaNs are considered equal.
|
||||
bool nans_equal() const { return nans_equal_; }
|
||||
|
||||
/// Return a new EqualOptions object with the "nans_equal" property changed.
|
||||
EqualOptions nans_equal(bool v) const {
|
||||
auto res = EqualOptions(*this);
|
||||
res.nans_equal_ = v;
|
||||
return res;
|
||||
}
|
||||
|
||||
/// Whether or not zeros with differing signs are considered equal.
|
||||
bool signed_zeros_equal() const { return signed_zeros_equal_; }
|
||||
|
||||
/// Return a new EqualOptions object with the "signed_zeros_equal" property changed.
|
||||
EqualOptions signed_zeros_equal(bool v) const {
|
||||
auto res = EqualOptions(*this);
|
||||
res.signed_zeros_equal_ = v;
|
||||
return res;
|
||||
}
|
||||
|
||||
/// The absolute tolerance for approximate comparisons of floating-point values.
|
||||
double atol() const { return atol_; }
|
||||
|
||||
/// Return a new EqualOptions object with the "atol" property changed.
|
||||
EqualOptions atol(double v) const {
|
||||
auto res = EqualOptions(*this);
|
||||
res.atol_ = v;
|
||||
return res;
|
||||
}
|
||||
|
||||
/// The ostream to which a diff will be formatted if arrays disagree.
|
||||
/// If this is null (the default) no diff will be formatted.
|
||||
std::ostream* diff_sink() const { return diff_sink_; }
|
||||
|
||||
/// Return a new EqualOptions object with the "diff_sink" property changed.
|
||||
/// This option will be ignored if diff formatting of the types of compared arrays is
|
||||
/// not supported.
|
||||
EqualOptions diff_sink(std::ostream* diff_sink) const {
|
||||
auto res = EqualOptions(*this);
|
||||
res.diff_sink_ = diff_sink;
|
||||
return res;
|
||||
}
|
||||
|
||||
static EqualOptions Defaults() { return {}; }
|
||||
|
||||
protected:
|
||||
double atol_ = kDefaultAbsoluteTolerance;
|
||||
bool nans_equal_ = false;
|
||||
bool signed_zeros_equal_ = true;
|
||||
|
||||
std::ostream* diff_sink_ = NULLPTR;
|
||||
};
|
||||
|
||||
/// Returns true if the arrays are exactly equal
|
||||
ARROW_EXPORT bool ArrayEquals(const Array& left, const Array& right,
|
||||
const EqualOptions& = EqualOptions::Defaults());
|
||||
|
||||
/// Returns true if the arrays are approximately equal. For non-floating point
|
||||
/// types, this is equivalent to ArrayEquals(left, right)
|
||||
ARROW_EXPORT bool ArrayApproxEquals(const Array& left, const Array& right,
|
||||
const EqualOptions& = EqualOptions::Defaults());
|
||||
|
||||
/// Returns true if indicated equal-length segment of arrays are exactly equal
|
||||
ARROW_EXPORT bool ArrayRangeEquals(const Array& left, const Array& right,
|
||||
int64_t start_idx, int64_t end_idx,
|
||||
int64_t other_start_idx,
|
||||
const EqualOptions& = EqualOptions::Defaults());
|
||||
|
||||
/// Returns true if indicated equal-length segment of arrays are approximately equal
|
||||
ARROW_EXPORT bool ArrayRangeApproxEquals(const Array& left, const Array& right,
|
||||
int64_t start_idx, int64_t end_idx,
|
||||
int64_t other_start_idx,
|
||||
const EqualOptions& = EqualOptions::Defaults());
|
||||
|
||||
ARROW_EXPORT bool TensorEquals(const Tensor& left, const Tensor& right,
|
||||
const EqualOptions& = EqualOptions::Defaults());
|
||||
|
||||
/// EXPERIMENTAL: Returns true if the given sparse tensors are exactly equal
|
||||
ARROW_EXPORT bool SparseTensorEquals(const SparseTensor& left, const SparseTensor& right,
|
||||
const EqualOptions& = EqualOptions::Defaults());
|
||||
|
||||
/// Returns true if the type metadata are exactly equal
|
||||
/// \param[in] left a DataType
|
||||
/// \param[in] right a DataType
|
||||
/// \param[in] check_metadata whether to compare KeyValueMetadata for child
|
||||
/// fields
|
||||
ARROW_EXPORT bool TypeEquals(const DataType& left, const DataType& right,
|
||||
bool check_metadata = true);
|
||||
|
||||
/// Returns true if scalars are equal
|
||||
/// \param[in] left a Scalar
|
||||
/// \param[in] right a Scalar
|
||||
/// \param[in] options comparison options
|
||||
ARROW_EXPORT bool ScalarEquals(const Scalar& left, const Scalar& right,
|
||||
const EqualOptions& options = EqualOptions::Defaults());
|
||||
|
||||
/// Returns true if scalars are approximately equal
|
||||
/// \param[in] left a Scalar
|
||||
/// \param[in] right a Scalar
|
||||
/// \param[in] options comparison options
|
||||
ARROW_EXPORT bool ScalarApproxEquals(
|
||||
const Scalar& left, const Scalar& right,
|
||||
const EqualOptions& options = EqualOptions::Defaults());
|
||||
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,60 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// NOTE: API is EXPERIMENTAL and will change without going through a
|
||||
// deprecation cycle
|
||||
|
||||
#pragma once
|
||||
|
||||
/// \defgroup compute-concrete-options Concrete option classes for compute functions
|
||||
/// @{
|
||||
/// @}
|
||||
|
||||
#include "arrow/compute/api_aggregate.h" // IWYU pragma: export
|
||||
#include "arrow/compute/api_scalar.h" // IWYU pragma: export
|
||||
#include "arrow/compute/api_vector.h" // IWYU pragma: export
|
||||
#include "arrow/compute/cast.h" // IWYU pragma: export
|
||||
#include "arrow/compute/function.h" // IWYU pragma: export
|
||||
#include "arrow/compute/kernel.h" // IWYU pragma: export
|
||||
#include "arrow/compute/registry.h" // IWYU pragma: export
|
||||
#include "arrow/datum.h" // IWYU pragma: export
|
||||
|
||||
/// \defgroup execnode-expressions Utilities for creating expressions to
|
||||
/// use in execution plans
|
||||
/// @{
|
||||
/// @}
|
||||
|
||||
#include "arrow/compute/exec/expression.h" // IWYU pragma: export
|
||||
|
||||
/// \defgroup execnode-options Concrete option classes for ExecNode options
|
||||
/// @{
|
||||
/// @}
|
||||
|
||||
#include "arrow/compute/exec/options.h" // IWYU pragma: export
|
||||
|
||||
/// \defgroup execnode-row Utilities for working with data in a row-major format
|
||||
/// @{
|
||||
/// @}
|
||||
|
||||
#include "arrow/compute/row/grouper.h" // IWYU pragma: export
|
||||
|
||||
/// \defgroup execnode-components Components associated with ExecNode
|
||||
/// @{
|
||||
/// @}
|
||||
|
||||
#include "arrow/compute/exec.h" // IWYU pragma: export
|
||||
#include "arrow/compute/exec/exec_plan.h" // IWYU pragma: export
|
||||
@@ -0,0 +1,412 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// Eager evaluation convenience APIs for invoking common functions, including
|
||||
// necessary memory allocations
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "arrow/compute/function.h"
|
||||
#include "arrow/datum.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
class Array;
|
||||
|
||||
namespace compute {
|
||||
|
||||
class ExecContext;
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// Aggregate functions
|
||||
|
||||
/// \addtogroup compute-concrete-options
|
||||
/// @{
|
||||
|
||||
/// \brief Control general scalar aggregate kernel behavior
|
||||
///
|
||||
/// By default, null values are ignored (skip_nulls = true).
|
||||
class ARROW_EXPORT ScalarAggregateOptions : public FunctionOptions {
|
||||
public:
|
||||
explicit ScalarAggregateOptions(bool skip_nulls = true, uint32_t min_count = 1);
|
||||
static constexpr char const kTypeName[] = "ScalarAggregateOptions";
|
||||
static ScalarAggregateOptions Defaults() { return ScalarAggregateOptions{}; }
|
||||
|
||||
/// If true (the default), null values are ignored. Otherwise, if any value is null,
|
||||
/// emit null.
|
||||
bool skip_nulls;
|
||||
/// If less than this many non-null values are observed, emit null.
|
||||
uint32_t min_count;
|
||||
};
|
||||
|
||||
/// \brief Control count aggregate kernel behavior.
|
||||
///
|
||||
/// By default, only non-null values are counted.
|
||||
class ARROW_EXPORT CountOptions : public FunctionOptions {
|
||||
public:
|
||||
enum CountMode {
|
||||
/// Count only non-null values.
|
||||
ONLY_VALID = 0,
|
||||
/// Count only null values.
|
||||
ONLY_NULL,
|
||||
/// Count both non-null and null values.
|
||||
ALL,
|
||||
};
|
||||
explicit CountOptions(CountMode mode = CountMode::ONLY_VALID);
|
||||
static constexpr char const kTypeName[] = "CountOptions";
|
||||
static CountOptions Defaults() { return CountOptions{}; }
|
||||
|
||||
CountMode mode;
|
||||
};
|
||||
|
||||
/// \brief Control Mode kernel behavior
|
||||
///
|
||||
/// Returns top-n common values and counts.
|
||||
/// By default, returns the most common value and count.
|
||||
class ARROW_EXPORT ModeOptions : public FunctionOptions {
|
||||
public:
|
||||
explicit ModeOptions(int64_t n = 1, bool skip_nulls = true, uint32_t min_count = 0);
|
||||
static constexpr char const kTypeName[] = "ModeOptions";
|
||||
static ModeOptions Defaults() { return ModeOptions{}; }
|
||||
|
||||
int64_t n = 1;
|
||||
/// If true (the default), null values are ignored. Otherwise, if any value is null,
|
||||
/// emit null.
|
||||
bool skip_nulls;
|
||||
/// If less than this many non-null values are observed, emit null.
|
||||
uint32_t min_count;
|
||||
};
|
||||
|
||||
/// \brief Control Delta Degrees of Freedom (ddof) of Variance and Stddev kernel
|
||||
///
|
||||
/// The divisor used in calculations is N - ddof, where N is the number of elements.
|
||||
/// By default, ddof is zero, and population variance or stddev is returned.
|
||||
class ARROW_EXPORT VarianceOptions : public FunctionOptions {
|
||||
public:
|
||||
explicit VarianceOptions(int ddof = 0, bool skip_nulls = true, uint32_t min_count = 0);
|
||||
static constexpr char const kTypeName[] = "VarianceOptions";
|
||||
static VarianceOptions Defaults() { return VarianceOptions{}; }
|
||||
|
||||
int ddof = 0;
|
||||
/// If true (the default), null values are ignored. Otherwise, if any value is null,
|
||||
/// emit null.
|
||||
bool skip_nulls;
|
||||
/// If less than this many non-null values are observed, emit null.
|
||||
uint32_t min_count;
|
||||
};
|
||||
|
||||
/// \brief Control Quantile kernel behavior
|
||||
///
|
||||
/// By default, returns the median value.
|
||||
class ARROW_EXPORT QuantileOptions : public FunctionOptions {
|
||||
public:
|
||||
/// Interpolation method to use when quantile lies between two data points
|
||||
enum Interpolation {
|
||||
LINEAR = 0,
|
||||
LOWER,
|
||||
HIGHER,
|
||||
NEAREST,
|
||||
MIDPOINT,
|
||||
};
|
||||
|
||||
explicit QuantileOptions(double q = 0.5, enum Interpolation interpolation = LINEAR,
|
||||
bool skip_nulls = true, uint32_t min_count = 0);
|
||||
|
||||
explicit QuantileOptions(std::vector<double> q,
|
||||
enum Interpolation interpolation = LINEAR,
|
||||
bool skip_nulls = true, uint32_t min_count = 0);
|
||||
|
||||
static constexpr char const kTypeName[] = "QuantileOptions";
|
||||
static QuantileOptions Defaults() { return QuantileOptions{}; }
|
||||
|
||||
/// quantile must be between 0 and 1 inclusive
|
||||
std::vector<double> q;
|
||||
enum Interpolation interpolation;
|
||||
/// If true (the default), null values are ignored. Otherwise, if any value is null,
|
||||
/// emit null.
|
||||
bool skip_nulls;
|
||||
/// If less than this many non-null values are observed, emit null.
|
||||
uint32_t min_count;
|
||||
};
|
||||
|
||||
/// \brief Control TDigest approximate quantile kernel behavior
|
||||
///
|
||||
/// By default, returns the median value.
|
||||
class ARROW_EXPORT TDigestOptions : public FunctionOptions {
|
||||
public:
|
||||
explicit TDigestOptions(double q = 0.5, uint32_t delta = 100,
|
||||
uint32_t buffer_size = 500, bool skip_nulls = true,
|
||||
uint32_t min_count = 0);
|
||||
explicit TDigestOptions(std::vector<double> q, uint32_t delta = 100,
|
||||
uint32_t buffer_size = 500, bool skip_nulls = true,
|
||||
uint32_t min_count = 0);
|
||||
static constexpr char const kTypeName[] = "TDigestOptions";
|
||||
static TDigestOptions Defaults() { return TDigestOptions{}; }
|
||||
|
||||
/// quantile must be between 0 and 1 inclusive
|
||||
std::vector<double> q;
|
||||
/// compression parameter, default 100
|
||||
uint32_t delta;
|
||||
/// input buffer size, default 500
|
||||
uint32_t buffer_size;
|
||||
/// If true (the default), null values are ignored. Otherwise, if any value is null,
|
||||
/// emit null.
|
||||
bool skip_nulls;
|
||||
/// If less than this many non-null values are observed, emit null.
|
||||
uint32_t min_count;
|
||||
};
|
||||
|
||||
/// \brief Control Index kernel behavior
|
||||
class ARROW_EXPORT IndexOptions : public FunctionOptions {
|
||||
public:
|
||||
explicit IndexOptions(std::shared_ptr<Scalar> value);
|
||||
// Default constructor for serialization
|
||||
IndexOptions();
|
||||
static constexpr char const kTypeName[] = "IndexOptions";
|
||||
|
||||
std::shared_ptr<Scalar> value;
|
||||
};
|
||||
|
||||
/// \brief Configure a grouped aggregation
|
||||
struct ARROW_EXPORT Aggregate {
|
||||
/// the name of the aggregation function
|
||||
std::string function;
|
||||
|
||||
/// options for the aggregation function
|
||||
std::shared_ptr<FunctionOptions> options;
|
||||
|
||||
// fields to which aggregations will be applied
|
||||
FieldRef target;
|
||||
|
||||
// output field name for aggregations
|
||||
std::string name;
|
||||
};
|
||||
|
||||
/// @}
|
||||
|
||||
/// \brief Count values in an array.
|
||||
///
|
||||
/// \param[in] options counting options, see CountOptions for more information
|
||||
/// \param[in] datum to count
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return out resulting datum
|
||||
///
|
||||
/// \since 1.0.0
|
||||
/// \note API not yet finalized
|
||||
ARROW_EXPORT
|
||||
Result<Datum> Count(const Datum& datum,
|
||||
const CountOptions& options = CountOptions::Defaults(),
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Compute the mean of a numeric array.
|
||||
///
|
||||
/// \param[in] value datum to compute the mean, expecting Array
|
||||
/// \param[in] options see ScalarAggregateOptions for more information
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return datum of the computed mean as a DoubleScalar
|
||||
///
|
||||
/// \since 1.0.0
|
||||
/// \note API not yet finalized
|
||||
ARROW_EXPORT
|
||||
Result<Datum> Mean(
|
||||
const Datum& value,
|
||||
const ScalarAggregateOptions& options = ScalarAggregateOptions::Defaults(),
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Compute the product of values of a numeric array.
|
||||
///
|
||||
/// \param[in] value datum to compute product of, expecting Array or ChunkedArray
|
||||
/// \param[in] options see ScalarAggregateOptions for more information
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return datum of the computed sum as a Scalar
|
||||
///
|
||||
/// \since 6.0.0
|
||||
/// \note API not yet finalized
|
||||
ARROW_EXPORT
|
||||
Result<Datum> Product(
|
||||
const Datum& value,
|
||||
const ScalarAggregateOptions& options = ScalarAggregateOptions::Defaults(),
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Sum values of a numeric array.
|
||||
///
|
||||
/// \param[in] value datum to sum, expecting Array or ChunkedArray
|
||||
/// \param[in] options see ScalarAggregateOptions for more information
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return datum of the computed sum as a Scalar
|
||||
///
|
||||
/// \since 1.0.0
|
||||
/// \note API not yet finalized
|
||||
ARROW_EXPORT
|
||||
Result<Datum> Sum(
|
||||
const Datum& value,
|
||||
const ScalarAggregateOptions& options = ScalarAggregateOptions::Defaults(),
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Calculate the min / max of a numeric array
|
||||
///
|
||||
/// This function returns both the min and max as a struct scalar, with type
|
||||
/// struct<min: T, max: T>, where T is the input type
|
||||
///
|
||||
/// \param[in] value input datum, expecting Array or ChunkedArray
|
||||
/// \param[in] options see ScalarAggregateOptions for more information
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return resulting datum as a struct<min: T, max: T> scalar
|
||||
///
|
||||
/// \since 1.0.0
|
||||
/// \note API not yet finalized
|
||||
ARROW_EXPORT
|
||||
Result<Datum> MinMax(
|
||||
const Datum& value,
|
||||
const ScalarAggregateOptions& options = ScalarAggregateOptions::Defaults(),
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Test whether any element in a boolean array evaluates to true.
|
||||
///
|
||||
/// This function returns true if any of the elements in the array evaluates
|
||||
/// to true and false otherwise. Null values are ignored by default.
|
||||
/// If null values are taken into account by setting ScalarAggregateOptions
|
||||
/// parameter skip_nulls = false then Kleene logic is used.
|
||||
/// See KleeneOr for more details on Kleene logic.
|
||||
///
|
||||
/// \param[in] value input datum, expecting a boolean array
|
||||
/// \param[in] options see ScalarAggregateOptions for more information
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return resulting datum as a BooleanScalar
|
||||
///
|
||||
/// \since 3.0.0
|
||||
/// \note API not yet finalized
|
||||
ARROW_EXPORT
|
||||
Result<Datum> Any(
|
||||
const Datum& value,
|
||||
const ScalarAggregateOptions& options = ScalarAggregateOptions::Defaults(),
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Test whether all elements in a boolean array evaluate to true.
|
||||
///
|
||||
/// This function returns true if all of the elements in the array evaluate
|
||||
/// to true and false otherwise. Null values are ignored by default.
|
||||
/// If null values are taken into account by setting ScalarAggregateOptions
|
||||
/// parameter skip_nulls = false then Kleene logic is used.
|
||||
/// See KleeneAnd for more details on Kleene logic.
|
||||
///
|
||||
/// \param[in] value input datum, expecting a boolean array
|
||||
/// \param[in] options see ScalarAggregateOptions for more information
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return resulting datum as a BooleanScalar
|
||||
|
||||
/// \since 3.0.0
|
||||
/// \note API not yet finalized
|
||||
ARROW_EXPORT
|
||||
Result<Datum> All(
|
||||
const Datum& value,
|
||||
const ScalarAggregateOptions& options = ScalarAggregateOptions::Defaults(),
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Calculate the modal (most common) value of a numeric array
|
||||
///
|
||||
/// This function returns top-n most common values and number of times they occur as
|
||||
/// an array of `struct<mode: T, count: int64>`, where T is the input type.
|
||||
/// Values with larger counts are returned before smaller ones.
|
||||
/// If there are more than one values with same count, smaller value is returned first.
|
||||
///
|
||||
/// \param[in] value input datum, expecting Array or ChunkedArray
|
||||
/// \param[in] options see ModeOptions for more information
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return resulting datum as an array of struct<mode: T, count: int64>
|
||||
///
|
||||
/// \since 2.0.0
|
||||
/// \note API not yet finalized
|
||||
ARROW_EXPORT
|
||||
Result<Datum> Mode(const Datum& value,
|
||||
const ModeOptions& options = ModeOptions::Defaults(),
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Calculate the standard deviation of a numeric array
|
||||
///
|
||||
/// \param[in] value input datum, expecting Array or ChunkedArray
|
||||
/// \param[in] options see VarianceOptions for more information
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return datum of the computed standard deviation as a DoubleScalar
|
||||
///
|
||||
/// \since 2.0.0
|
||||
/// \note API not yet finalized
|
||||
ARROW_EXPORT
|
||||
Result<Datum> Stddev(const Datum& value,
|
||||
const VarianceOptions& options = VarianceOptions::Defaults(),
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Calculate the variance of a numeric array
|
||||
///
|
||||
/// \param[in] value input datum, expecting Array or ChunkedArray
|
||||
/// \param[in] options see VarianceOptions for more information
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return datum of the computed variance as a DoubleScalar
|
||||
///
|
||||
/// \since 2.0.0
|
||||
/// \note API not yet finalized
|
||||
ARROW_EXPORT
|
||||
Result<Datum> Variance(const Datum& value,
|
||||
const VarianceOptions& options = VarianceOptions::Defaults(),
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Calculate the quantiles of a numeric array
|
||||
///
|
||||
/// \param[in] value input datum, expecting Array or ChunkedArray
|
||||
/// \param[in] options see QuantileOptions for more information
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return resulting datum as an array
|
||||
///
|
||||
/// \since 4.0.0
|
||||
/// \note API not yet finalized
|
||||
ARROW_EXPORT
|
||||
Result<Datum> Quantile(const Datum& value,
|
||||
const QuantileOptions& options = QuantileOptions::Defaults(),
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Calculate the approximate quantiles of a numeric array with T-Digest algorithm
|
||||
///
|
||||
/// \param[in] value input datum, expecting Array or ChunkedArray
|
||||
/// \param[in] options see TDigestOptions for more information
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return resulting datum as an array
|
||||
///
|
||||
/// \since 4.0.0
|
||||
/// \note API not yet finalized
|
||||
ARROW_EXPORT
|
||||
Result<Datum> TDigest(const Datum& value,
|
||||
const TDigestOptions& options = TDigestOptions::Defaults(),
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Find the first index of a value in an array.
|
||||
///
|
||||
/// \param[in] value The array to search.
|
||||
/// \param[in] options The array to search for. See IndexOoptions.
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return out a Scalar containing the index (or -1 if not found).
|
||||
///
|
||||
/// \since 5.0.0
|
||||
/// \note API not yet finalized
|
||||
ARROW_EXPORT
|
||||
Result<Datum> Index(const Datum& value, const IndexOptions& options,
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,598 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <utility>
|
||||
|
||||
#include "arrow/compute/function.h"
|
||||
#include "arrow/datum.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/type_fwd.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace compute {
|
||||
|
||||
class ExecContext;
|
||||
|
||||
/// \addtogroup compute-concrete-options
|
||||
/// @{
|
||||
|
||||
class ARROW_EXPORT FilterOptions : public FunctionOptions {
|
||||
public:
|
||||
/// Configure the action taken when a slot of the selection mask is null
|
||||
enum NullSelectionBehavior {
|
||||
/// The corresponding filtered value will be removed in the output.
|
||||
DROP,
|
||||
/// The corresponding filtered value will be null in the output.
|
||||
EMIT_NULL,
|
||||
};
|
||||
|
||||
explicit FilterOptions(NullSelectionBehavior null_selection = DROP);
|
||||
static constexpr char const kTypeName[] = "FilterOptions";
|
||||
static FilterOptions Defaults() { return FilterOptions(); }
|
||||
|
||||
NullSelectionBehavior null_selection_behavior = DROP;
|
||||
};
|
||||
|
||||
class ARROW_EXPORT TakeOptions : public FunctionOptions {
|
||||
public:
|
||||
explicit TakeOptions(bool boundscheck = true);
|
||||
static constexpr char const kTypeName[] = "TakeOptions";
|
||||
static TakeOptions BoundsCheck() { return TakeOptions(true); }
|
||||
static TakeOptions NoBoundsCheck() { return TakeOptions(false); }
|
||||
static TakeOptions Defaults() { return BoundsCheck(); }
|
||||
|
||||
bool boundscheck = true;
|
||||
};
|
||||
|
||||
/// \brief Options for the dictionary encode function
|
||||
class ARROW_EXPORT DictionaryEncodeOptions : public FunctionOptions {
|
||||
public:
|
||||
/// Configure how null values will be encoded
|
||||
enum NullEncodingBehavior {
|
||||
/// The null value will be added to the dictionary with a proper index.
|
||||
ENCODE,
|
||||
/// The null value will be masked in the indices array.
|
||||
MASK
|
||||
};
|
||||
|
||||
explicit DictionaryEncodeOptions(NullEncodingBehavior null_encoding = MASK);
|
||||
static constexpr char const kTypeName[] = "DictionaryEncodeOptions";
|
||||
static DictionaryEncodeOptions Defaults() { return DictionaryEncodeOptions(); }
|
||||
|
||||
NullEncodingBehavior null_encoding_behavior = MASK;
|
||||
};
|
||||
|
||||
enum class SortOrder {
|
||||
/// Arrange values in increasing order
|
||||
Ascending,
|
||||
/// Arrange values in decreasing order
|
||||
Descending,
|
||||
};
|
||||
|
||||
enum class NullPlacement {
|
||||
/// Place nulls and NaNs before any non-null values.
|
||||
/// NaNs will come after nulls.
|
||||
AtStart,
|
||||
/// Place nulls and NaNs after any non-null values.
|
||||
/// NaNs will come before nulls.
|
||||
AtEnd,
|
||||
};
|
||||
|
||||
/// \brief One sort key for PartitionNthIndices (TODO) and SortIndices
|
||||
class ARROW_EXPORT SortKey : public util::EqualityComparable<SortKey> {
|
||||
public:
|
||||
explicit SortKey(FieldRef target, SortOrder order = SortOrder::Ascending)
|
||||
: target(std::move(target)), order(order) {}
|
||||
|
||||
using util::EqualityComparable<SortKey>::Equals;
|
||||
using util::EqualityComparable<SortKey>::operator==;
|
||||
using util::EqualityComparable<SortKey>::operator!=;
|
||||
bool Equals(const SortKey& other) const;
|
||||
std::string ToString() const;
|
||||
|
||||
/// A FieldRef targetting the sort column.
|
||||
FieldRef target;
|
||||
/// How to order by this sort key.
|
||||
SortOrder order;
|
||||
};
|
||||
|
||||
class ARROW_EXPORT ArraySortOptions : public FunctionOptions {
|
||||
public:
|
||||
explicit ArraySortOptions(SortOrder order = SortOrder::Ascending,
|
||||
NullPlacement null_placement = NullPlacement::AtEnd);
|
||||
static constexpr char const kTypeName[] = "ArraySortOptions";
|
||||
static ArraySortOptions Defaults() { return ArraySortOptions(); }
|
||||
|
||||
/// Sorting order
|
||||
SortOrder order;
|
||||
/// Whether nulls and NaNs are placed at the start or at the end
|
||||
NullPlacement null_placement;
|
||||
};
|
||||
|
||||
class ARROW_EXPORT SortOptions : public FunctionOptions {
|
||||
public:
|
||||
explicit SortOptions(std::vector<SortKey> sort_keys = {},
|
||||
NullPlacement null_placement = NullPlacement::AtEnd);
|
||||
static constexpr char const kTypeName[] = "SortOptions";
|
||||
static SortOptions Defaults() { return SortOptions(); }
|
||||
|
||||
/// Column key(s) to order by and how to order by these sort keys.
|
||||
std::vector<SortKey> sort_keys;
|
||||
/// Whether nulls and NaNs are placed at the start or at the end
|
||||
NullPlacement null_placement;
|
||||
};
|
||||
|
||||
/// \brief SelectK options
|
||||
class ARROW_EXPORT SelectKOptions : public FunctionOptions {
|
||||
public:
|
||||
explicit SelectKOptions(int64_t k = -1, std::vector<SortKey> sort_keys = {});
|
||||
static constexpr char const kTypeName[] = "SelectKOptions";
|
||||
static SelectKOptions Defaults() { return SelectKOptions(); }
|
||||
|
||||
static SelectKOptions TopKDefault(int64_t k, std::vector<std::string> key_names = {}) {
|
||||
std::vector<SortKey> keys;
|
||||
for (const auto& name : key_names) {
|
||||
keys.emplace_back(SortKey(name, SortOrder::Descending));
|
||||
}
|
||||
if (key_names.empty()) {
|
||||
keys.emplace_back(SortKey("not-used", SortOrder::Descending));
|
||||
}
|
||||
return SelectKOptions{k, keys};
|
||||
}
|
||||
static SelectKOptions BottomKDefault(int64_t k,
|
||||
std::vector<std::string> key_names = {}) {
|
||||
std::vector<SortKey> keys;
|
||||
for (const auto& name : key_names) {
|
||||
keys.emplace_back(SortKey(name, SortOrder::Ascending));
|
||||
}
|
||||
if (key_names.empty()) {
|
||||
keys.emplace_back(SortKey("not-used", SortOrder::Ascending));
|
||||
}
|
||||
return SelectKOptions{k, keys};
|
||||
}
|
||||
|
||||
/// The number of `k` elements to keep.
|
||||
int64_t k;
|
||||
/// Column key(s) to order by and how to order by these sort keys.
|
||||
std::vector<SortKey> sort_keys;
|
||||
};
|
||||
|
||||
/// \brief Rank options
|
||||
class ARROW_EXPORT RankOptions : public FunctionOptions {
|
||||
public:
|
||||
/// Configure how ties between equal values are handled
|
||||
enum Tiebreaker {
|
||||
/// Ties get the smallest possible rank in sorted order.
|
||||
Min,
|
||||
/// Ties get the largest possible rank in sorted order.
|
||||
Max,
|
||||
/// Ranks are assigned in order of when ties appear in the input.
|
||||
/// This ensures the ranks are a stable permutation of the input.
|
||||
First,
|
||||
/// The ranks span a dense [1, M] interval where M is the number
|
||||
/// of distinct values in the input.
|
||||
Dense
|
||||
};
|
||||
|
||||
explicit RankOptions(std::vector<SortKey> sort_keys = {},
|
||||
NullPlacement null_placement = NullPlacement::AtEnd,
|
||||
Tiebreaker tiebreaker = RankOptions::First);
|
||||
/// Convenience constructor for array inputs
|
||||
explicit RankOptions(SortOrder order,
|
||||
NullPlacement null_placement = NullPlacement::AtEnd,
|
||||
Tiebreaker tiebreaker = RankOptions::First)
|
||||
: RankOptions({SortKey("", order)}, null_placement, tiebreaker) {}
|
||||
|
||||
static constexpr char const kTypeName[] = "RankOptions";
|
||||
static RankOptions Defaults() { return RankOptions(); }
|
||||
|
||||
/// Column key(s) to order by and how to order by these sort keys.
|
||||
std::vector<SortKey> sort_keys;
|
||||
/// Whether nulls and NaNs are placed at the start or at the end
|
||||
NullPlacement null_placement;
|
||||
/// Tiebreaker for dealing with equal values in ranks
|
||||
Tiebreaker tiebreaker;
|
||||
};
|
||||
|
||||
/// \brief Partitioning options for NthToIndices
|
||||
class ARROW_EXPORT PartitionNthOptions : public FunctionOptions {
|
||||
public:
|
||||
explicit PartitionNthOptions(int64_t pivot,
|
||||
NullPlacement null_placement = NullPlacement::AtEnd);
|
||||
PartitionNthOptions() : PartitionNthOptions(0) {}
|
||||
static constexpr char const kTypeName[] = "PartitionNthOptions";
|
||||
|
||||
/// The index into the equivalent sorted array of the partition pivot element.
|
||||
int64_t pivot;
|
||||
/// Whether nulls and NaNs are partitioned at the start or at the end
|
||||
NullPlacement null_placement;
|
||||
};
|
||||
|
||||
/// \brief Options for cumulative sum function
|
||||
class ARROW_EXPORT CumulativeSumOptions : public FunctionOptions {
|
||||
public:
|
||||
explicit CumulativeSumOptions(double start = 0, bool skip_nulls = false,
|
||||
bool check_overflow = false);
|
||||
explicit CumulativeSumOptions(std::shared_ptr<Scalar> start, bool skip_nulls = false,
|
||||
bool check_overflow = false);
|
||||
static constexpr char const kTypeName[] = "CumulativeSumOptions";
|
||||
static CumulativeSumOptions Defaults() { return CumulativeSumOptions(); }
|
||||
|
||||
/// Optional starting value for cumulative operation computation
|
||||
std::shared_ptr<Scalar> start;
|
||||
|
||||
/// If true, nulls in the input are ignored and produce a corresponding null output.
|
||||
/// When false, the first null encountered is propagated through the remaining output.
|
||||
bool skip_nulls = false;
|
||||
|
||||
/// When true, returns an Invalid Status when overflow is detected
|
||||
bool check_overflow = false;
|
||||
};
|
||||
|
||||
/// @}
|
||||
|
||||
/// \brief Filter with a boolean selection filter
|
||||
///
|
||||
/// The output will be populated with values from the input at positions
|
||||
/// where the selection filter is not 0. Nulls in the filter will be handled
|
||||
/// based on options.null_selection_behavior.
|
||||
///
|
||||
/// For example given values = ["a", "b", "c", null, "e", "f"] and
|
||||
/// filter = [0, 1, 1, 0, null, 1], the output will be
|
||||
/// (null_selection_behavior == DROP) = ["b", "c", "f"]
|
||||
/// (null_selection_behavior == EMIT_NULL) = ["b", "c", null, "f"]
|
||||
///
|
||||
/// \param[in] values array to filter
|
||||
/// \param[in] filter indicates which values should be filtered out
|
||||
/// \param[in] options configures null_selection_behavior
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return the resulting datum
|
||||
ARROW_EXPORT
|
||||
Result<Datum> Filter(const Datum& values, const Datum& filter,
|
||||
const FilterOptions& options = FilterOptions::Defaults(),
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
namespace internal {
|
||||
|
||||
// These internal functions are implemented in kernels/vector_selection.cc
|
||||
|
||||
/// \brief Return the number of selected indices in the boolean filter
|
||||
ARROW_EXPORT
|
||||
int64_t GetFilterOutputSize(const ArraySpan& filter,
|
||||
FilterOptions::NullSelectionBehavior null_selection);
|
||||
|
||||
/// \brief Compute uint64 selection indices for use with Take given a boolean
|
||||
/// filter
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<ArrayData>> GetTakeIndices(
|
||||
const ArraySpan& filter, FilterOptions::NullSelectionBehavior null_selection,
|
||||
MemoryPool* memory_pool = default_memory_pool());
|
||||
|
||||
} // namespace internal
|
||||
|
||||
/// \brief ReplaceWithMask replaces each value in the array corresponding
|
||||
/// to a true value in the mask with the next element from `replacements`.
|
||||
///
|
||||
/// \param[in] values Array input to replace
|
||||
/// \param[in] mask Array or Scalar of Boolean mask values
|
||||
/// \param[in] replacements The replacement values to draw from. There must
|
||||
/// be as many replacement values as true values in the mask.
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
///
|
||||
/// \return the resulting datum
|
||||
///
|
||||
/// \since 5.0.0
|
||||
/// \note API not yet finalized
|
||||
ARROW_EXPORT
|
||||
Result<Datum> ReplaceWithMask(const Datum& values, const Datum& mask,
|
||||
const Datum& replacements, ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief FillNullForward fill null values in forward direction
|
||||
///
|
||||
/// The output array will be of the same type as the input values
|
||||
/// array, with replaced null values in forward direction.
|
||||
///
|
||||
/// For example given values = ["a", "b", "c", null, null, "f"],
|
||||
/// the output will be = ["a", "b", "c", "c", "c", "f"]
|
||||
///
|
||||
/// \param[in] values datum from which to take
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return the resulting datum
|
||||
ARROW_EXPORT
|
||||
Result<Datum> FillNullForward(const Datum& values, ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief FillNullBackward fill null values in backward direction
|
||||
///
|
||||
/// The output array will be of the same type as the input values
|
||||
/// array, with replaced null values in backward direction.
|
||||
///
|
||||
/// For example given values = ["a", "b", "c", null, null, "f"],
|
||||
/// the output will be = ["a", "b", "c", "f", "f", "f"]
|
||||
///
|
||||
/// \param[in] values datum from which to take
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return the resulting datum
|
||||
ARROW_EXPORT
|
||||
Result<Datum> FillNullBackward(const Datum& values, ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Take from an array of values at indices in another array
|
||||
///
|
||||
/// The output array will be of the same type as the input values
|
||||
/// array, with elements taken from the values array at the given
|
||||
/// indices. If an index is null then the taken element will be null.
|
||||
///
|
||||
/// For example given values = ["a", "b", "c", null, "e", "f"] and
|
||||
/// indices = [2, 1, null, 3], the output will be
|
||||
/// = [values[2], values[1], null, values[3]]
|
||||
/// = ["c", "b", null, null]
|
||||
///
|
||||
/// \param[in] values datum from which to take
|
||||
/// \param[in] indices which values to take
|
||||
/// \param[in] options options
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return the resulting datum
|
||||
ARROW_EXPORT
|
||||
Result<Datum> Take(const Datum& values, const Datum& indices,
|
||||
const TakeOptions& options = TakeOptions::Defaults(),
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Take with Array inputs and output
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Array>> Take(const Array& values, const Array& indices,
|
||||
const TakeOptions& options = TakeOptions::Defaults(),
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Drop Null from an array of values
|
||||
///
|
||||
/// The output array will be of the same type as the input values
|
||||
/// array, with elements taken from the values array without nulls.
|
||||
///
|
||||
/// For example given values = ["a", "b", "c", null, "e", "f"],
|
||||
/// the output will be = ["a", "b", "c", "e", "f"]
|
||||
///
|
||||
/// \param[in] values datum from which to take
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return the resulting datum
|
||||
ARROW_EXPORT
|
||||
Result<Datum> DropNull(const Datum& values, ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief DropNull with Array inputs and output
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Array>> DropNull(const Array& values, ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Return indices that partition an array around n-th sorted element.
|
||||
///
|
||||
/// Find index of n-th(0 based) smallest value and perform indirect
|
||||
/// partition of an array around that element. Output indices[0 ~ n-1]
|
||||
/// holds values no greater than n-th element, and indices[n+1 ~ end]
|
||||
/// holds values no less than n-th element. Elements in each partition
|
||||
/// is not sorted. Nulls will be partitioned to the end of the output.
|
||||
/// Output is not guaranteed to be stable.
|
||||
///
|
||||
/// \param[in] values array to be partitioned
|
||||
/// \param[in] n pivot array around sorted n-th element
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return offsets indices that would partition an array
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Array>> NthToIndices(const Array& values, int64_t n,
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Return indices that partition an array around n-th sorted element.
|
||||
///
|
||||
/// This overload takes a PartitionNthOptions specifiying the pivot index
|
||||
/// and the null handling.
|
||||
///
|
||||
/// \param[in] values array to be partitioned
|
||||
/// \param[in] options options including pivot index and null handling
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return offsets indices that would partition an array
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Array>> NthToIndices(const Array& values,
|
||||
const PartitionNthOptions& options,
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Return indices that would select the first `k` elements.
|
||||
///
|
||||
/// Perform an indirect sort of the datum, keeping only the first `k` elements. The output
|
||||
/// array will contain indices such that the item indicated by the k-th index will be in
|
||||
/// the position it would be if the datum were sorted by `options.sort_keys`. However,
|
||||
/// indices of null values will not be part of the output. The sort is not guaranteed to
|
||||
/// be stable.
|
||||
///
|
||||
/// \param[in] datum datum to be partitioned
|
||||
/// \param[in] options options
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return a datum with the same schema as the input
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Array>> SelectKUnstable(const Datum& datum,
|
||||
const SelectKOptions& options,
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Return the indices that would sort an array.
|
||||
///
|
||||
/// Perform an indirect sort of array. The output array will contain
|
||||
/// indices that would sort an array, which would be the same length
|
||||
/// as input. Nulls will be stably partitioned to the end of the output
|
||||
/// regardless of order.
|
||||
///
|
||||
/// For example given array = [null, 1, 3.3, null, 2, 5.3] and order
|
||||
/// = SortOrder::DESCENDING, the output will be [5, 2, 4, 1, 0,
|
||||
/// 3].
|
||||
///
|
||||
/// \param[in] array array to sort
|
||||
/// \param[in] order ascending or descending
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return offsets indices that would sort an array
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Array>> SortIndices(const Array& array,
|
||||
SortOrder order = SortOrder::Ascending,
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Return the indices that would sort an array.
|
||||
///
|
||||
/// This overload takes a ArraySortOptions specifiying the sort order
|
||||
/// and the null handling.
|
||||
///
|
||||
/// \param[in] array array to sort
|
||||
/// \param[in] options options including sort order and null handling
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return offsets indices that would sort an array
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Array>> SortIndices(const Array& array,
|
||||
const ArraySortOptions& options,
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Return the indices that would sort a chunked array.
|
||||
///
|
||||
/// Perform an indirect sort of chunked array. The output array will
|
||||
/// contain indices that would sort a chunked array, which would be
|
||||
/// the same length as input. Nulls will be stably partitioned to the
|
||||
/// end of the output regardless of order.
|
||||
///
|
||||
/// For example given chunked_array = [[null, 1], [3.3], [null, 2,
|
||||
/// 5.3]] and order = SortOrder::DESCENDING, the output will be [5, 2,
|
||||
/// 4, 1, 0, 3].
|
||||
///
|
||||
/// \param[in] chunked_array chunked array to sort
|
||||
/// \param[in] order ascending or descending
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return offsets indices that would sort an array
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Array>> SortIndices(const ChunkedArray& chunked_array,
|
||||
SortOrder order = SortOrder::Ascending,
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Return the indices that would sort a chunked array.
|
||||
///
|
||||
/// This overload takes a ArraySortOptions specifiying the sort order
|
||||
/// and the null handling.
|
||||
///
|
||||
/// \param[in] chunked_array chunked array to sort
|
||||
/// \param[in] options options including sort order and null handling
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return offsets indices that would sort an array
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Array>> SortIndices(const ChunkedArray& chunked_array,
|
||||
const ArraySortOptions& options,
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Return the indices that would sort an input in the
|
||||
/// specified order. Input is one of array, chunked array record batch
|
||||
/// or table.
|
||||
///
|
||||
/// Perform an indirect sort of input. The output array will contain
|
||||
/// indices that would sort an input, which would be the same length
|
||||
/// as input. Nulls will be stably partitioned to the start or to the end
|
||||
/// of the output depending on SortOrder::null_placement.
|
||||
///
|
||||
/// For example given input (table) = {
|
||||
/// "column1": [[null, 1], [ 3, null, 2, 1]],
|
||||
/// "column2": [[ 5], [3, null, null, 5, 5]],
|
||||
/// } and options = {
|
||||
/// {"column1", SortOrder::Ascending},
|
||||
/// {"column2", SortOrder::Descending},
|
||||
/// }, the output will be [5, 1, 4, 2, 0, 3].
|
||||
///
|
||||
/// \param[in] datum array, chunked array, record batch or table to sort
|
||||
/// \param[in] options options
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return offsets indices that would sort a table
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Array>> SortIndices(const Datum& datum, const SortOptions& options,
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Compute unique elements from an array-like object
|
||||
///
|
||||
/// Note if a null occurs in the input it will NOT be included in the output.
|
||||
///
|
||||
/// \param[in] datum array-like input
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return result as Array
|
||||
///
|
||||
/// \since 1.0.0
|
||||
/// \note API not yet finalized
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Array>> Unique(const Datum& datum, ExecContext* ctx = NULLPTR);
|
||||
|
||||
// Constants for accessing the output of ValueCounts
|
||||
ARROW_EXPORT extern const char kValuesFieldName[];
|
||||
ARROW_EXPORT extern const char kCountsFieldName[];
|
||||
ARROW_EXPORT extern const int32_t kValuesFieldIndex;
|
||||
ARROW_EXPORT extern const int32_t kCountsFieldIndex;
|
||||
|
||||
/// \brief Return counts of unique elements from an array-like object.
|
||||
///
|
||||
/// Note that the counts do not include counts for nulls in the array. These can be
|
||||
/// obtained separately from metadata.
|
||||
///
|
||||
/// For floating point arrays there is no attempt to normalize -0.0, 0.0 and NaN values
|
||||
/// which can lead to unexpected results if the input Array has these values.
|
||||
///
|
||||
/// \param[in] value array-like input
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return counts An array of <input type "Values", int64_t "Counts"> structs.
|
||||
///
|
||||
/// \since 1.0.0
|
||||
/// \note API not yet finalized
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<StructArray>> ValueCounts(const Datum& value,
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Dictionary-encode values in an array-like object
|
||||
///
|
||||
/// Any nulls encountered in the dictionary will be handled according to the
|
||||
/// specified null encoding behavior.
|
||||
///
|
||||
/// For example, given values ["a", "b", null, "a", null] the output will be
|
||||
/// (null_encoding == ENCODE) Indices: [0, 1, 2, 0, 2] / Dict: ["a", "b", null]
|
||||
/// (null_encoding == MASK) Indices: [0, 1, null, 0, null] / Dict: ["a", "b"]
|
||||
///
|
||||
/// If the input is already dictionary encoded this function is a no-op unless
|
||||
/// it needs to modify the null_encoding (TODO)
|
||||
///
|
||||
/// \param[in] data array-like input
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \param[in] options configures null encoding behavior
|
||||
/// \return result with same shape and type as input
|
||||
///
|
||||
/// \since 1.0.0
|
||||
/// \note API not yet finalized
|
||||
ARROW_EXPORT
|
||||
Result<Datum> DictionaryEncode(
|
||||
const Datum& data,
|
||||
const DictionaryEncodeOptions& options = DictionaryEncodeOptions::Defaults(),
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
ARROW_EXPORT
|
||||
Result<Datum> CumulativeSum(
|
||||
const Datum& values,
|
||||
const CumulativeSumOptions& options = CumulativeSumOptions::Defaults(),
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// Deprecated functions
|
||||
|
||||
ARROW_DEPRECATED("Deprecated in 3.0.0. Use SortIndices()")
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Array>> SortToIndices(const Array& values,
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,124 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/compute/function.h"
|
||||
#include "arrow/compute/type_fwd.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/type.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
class Array;
|
||||
|
||||
namespace compute {
|
||||
|
||||
class ExecContext;
|
||||
|
||||
/// \addtogroup compute-concrete-options
|
||||
/// @{
|
||||
|
||||
class ARROW_EXPORT CastOptions : public FunctionOptions {
|
||||
public:
|
||||
explicit CastOptions(bool safe = true);
|
||||
|
||||
static constexpr char const kTypeName[] = "CastOptions";
|
||||
static CastOptions Safe(TypeHolder to_type = {}) {
|
||||
CastOptions safe(true);
|
||||
safe.to_type = std::move(to_type);
|
||||
return safe;
|
||||
}
|
||||
|
||||
static CastOptions Unsafe(TypeHolder to_type = {}) {
|
||||
CastOptions unsafe(false);
|
||||
unsafe.to_type = std::move(to_type);
|
||||
return unsafe;
|
||||
}
|
||||
|
||||
// Type being casted to. May be passed separate to eager function
|
||||
// compute::Cast
|
||||
TypeHolder to_type;
|
||||
|
||||
bool allow_int_overflow;
|
||||
bool allow_time_truncate;
|
||||
bool allow_time_overflow;
|
||||
bool allow_decimal_truncate;
|
||||
bool allow_float_truncate;
|
||||
// Indicate if conversions from Binary/FixedSizeBinary to string must
|
||||
// validate the utf8 payload.
|
||||
bool allow_invalid_utf8;
|
||||
};
|
||||
|
||||
/// @}
|
||||
|
||||
/// \brief Return true if a cast function is defined
|
||||
ARROW_EXPORT
|
||||
bool CanCast(const DataType& from_type, const DataType& to_type);
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// Convenience invocation APIs for a number of kernels
|
||||
|
||||
/// \brief Cast from one array type to another
|
||||
/// \param[in] value array to cast
|
||||
/// \param[in] to_type type to cast to
|
||||
/// \param[in] options casting options
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return the resulting array
|
||||
///
|
||||
/// \since 1.0.0
|
||||
/// \note API not yet finalized
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Array>> Cast(const Array& value, const TypeHolder& to_type,
|
||||
const CastOptions& options = CastOptions::Safe(),
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Cast from one array type to another
|
||||
/// \param[in] value array to cast
|
||||
/// \param[in] options casting options. The "to_type" field must be populated
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return the resulting array
|
||||
///
|
||||
/// \since 1.0.0
|
||||
/// \note API not yet finalized
|
||||
ARROW_EXPORT
|
||||
Result<Datum> Cast(const Datum& value, const CastOptions& options,
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Cast from one value to another
|
||||
/// \param[in] value datum to cast
|
||||
/// \param[in] to_type type to cast to
|
||||
/// \param[in] options casting options
|
||||
/// \param[in] ctx the function execution context, optional
|
||||
/// \return the resulting datum
|
||||
///
|
||||
/// \since 1.0.0
|
||||
/// \note API not yet finalized
|
||||
ARROW_EXPORT
|
||||
Result<Datum> Cast(const Datum& value, const TypeHolder& to_type,
|
||||
const CastOptions& options = CastOptions::Safe(),
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,460 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// NOTE: API is EXPERIMENTAL and will change without going through a
|
||||
// deprecation cycle
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
#include <cstdint>
|
||||
#include <limits>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/array/data.h"
|
||||
#include "arrow/compute/exec/expression.h"
|
||||
#include "arrow/compute/type_fwd.h"
|
||||
#include "arrow/datum.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/type_fwd.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/type_fwd.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace compute {
|
||||
|
||||
// It seems like 64K might be a good default chunksize to use for execution
|
||||
// based on the experience of other query processing systems. The current
|
||||
// default is not to chunk contiguous arrays, though, but this may change in
|
||||
// the future once parallel execution is implemented
|
||||
static constexpr int64_t kDefaultExecChunksize = UINT16_MAX;
|
||||
|
||||
/// \brief Context for expression-global variables and options used by
|
||||
/// function evaluation
|
||||
class ARROW_EXPORT ExecContext {
|
||||
public:
|
||||
// If no function registry passed, the default is used.
|
||||
explicit ExecContext(MemoryPool* pool = default_memory_pool(),
|
||||
::arrow::internal::Executor* executor = NULLPTR,
|
||||
FunctionRegistry* func_registry = NULLPTR);
|
||||
|
||||
/// \brief The MemoryPool used for allocations, default is
|
||||
/// default_memory_pool().
|
||||
MemoryPool* memory_pool() const { return pool_; }
|
||||
|
||||
const ::arrow::internal::CpuInfo* cpu_info() const;
|
||||
|
||||
/// \brief An Executor which may be used to parallelize execution.
|
||||
::arrow::internal::Executor* executor() const { return executor_; }
|
||||
|
||||
/// \brief The FunctionRegistry for looking up functions by name and
|
||||
/// selecting kernels for execution. Defaults to the library-global function
|
||||
/// registry provided by GetFunctionRegistry.
|
||||
FunctionRegistry* func_registry() const { return func_registry_; }
|
||||
|
||||
// \brief Set maximum length unit of work for kernel execution. Larger
|
||||
// contiguous array inputs will be split into smaller chunks, and, if
|
||||
// possible and enabled, processed in parallel. The default chunksize is
|
||||
// INT64_MAX, so contiguous arrays are not split.
|
||||
void set_exec_chunksize(int64_t chunksize) { exec_chunksize_ = chunksize; }
|
||||
|
||||
// \brief Maximum length for ExecBatch data chunks processed by
|
||||
// kernels. Contiguous array inputs with longer length will be split into
|
||||
// smaller chunks.
|
||||
int64_t exec_chunksize() const { return exec_chunksize_; }
|
||||
|
||||
/// \brief Set whether to use multiple threads for function execution. This
|
||||
/// is not yet used.
|
||||
void set_use_threads(bool use_threads = true) { use_threads_ = use_threads; }
|
||||
|
||||
/// \brief If true, then utilize multiple threads where relevant for function
|
||||
/// execution. This is not yet used.
|
||||
bool use_threads() const { return use_threads_; }
|
||||
|
||||
// Set the preallocation strategy for kernel execution as it relates to
|
||||
// chunked execution. For chunked execution, whether via ChunkedArray inputs
|
||||
// or splitting larger Array arguments into smaller pieces, contiguous
|
||||
// allocation (if permitted by the kernel) will allocate one large array to
|
||||
// write output into yielding it to the caller at the end. If this option is
|
||||
// set to off, then preallocations will be performed independently for each
|
||||
// chunk of execution
|
||||
//
|
||||
// TODO: At some point we might want the limit the size of contiguous
|
||||
// preallocations. For example, even if the exec_chunksize is 64K or less, we
|
||||
// might limit contiguous allocations to 1M records, say.
|
||||
void set_preallocate_contiguous(bool preallocate) {
|
||||
preallocate_contiguous_ = preallocate;
|
||||
}
|
||||
|
||||
/// \brief If contiguous preallocations should be used when doing chunked
|
||||
/// execution as specified by exec_chunksize(). See
|
||||
/// set_preallocate_contiguous() for more information.
|
||||
bool preallocate_contiguous() const { return preallocate_contiguous_; }
|
||||
|
||||
private:
|
||||
MemoryPool* pool_;
|
||||
::arrow::internal::Executor* executor_;
|
||||
FunctionRegistry* func_registry_;
|
||||
int64_t exec_chunksize_ = std::numeric_limits<int64_t>::max();
|
||||
bool preallocate_contiguous_ = true;
|
||||
bool use_threads_ = true;
|
||||
};
|
||||
|
||||
// TODO: Consider standardizing on uint16 selection vectors and only use them
|
||||
// when we can ensure that each value is 64K length or smaller
|
||||
|
||||
/// \brief Container for an array of value selection indices that were
|
||||
/// materialized from a filter.
|
||||
///
|
||||
/// Columnar query engines (see e.g. [1]) have found that rather than
|
||||
/// materializing filtered data, the filter can instead be converted to an
|
||||
/// array of the "on" indices and then "fusing" these indices in operator
|
||||
/// implementations. This is especially relevant for aggregations but also
|
||||
/// applies to scalar operations.
|
||||
///
|
||||
/// We are not yet using this so this is mostly a placeholder for now.
|
||||
///
|
||||
/// [1]: http://cidrdb.org/cidr2005/papers/P19.pdf
|
||||
class ARROW_EXPORT SelectionVector {
|
||||
public:
|
||||
explicit SelectionVector(std::shared_ptr<ArrayData> data);
|
||||
|
||||
explicit SelectionVector(const Array& arr);
|
||||
|
||||
/// \brief Create SelectionVector from boolean mask
|
||||
static Result<std::shared_ptr<SelectionVector>> FromMask(const BooleanArray& arr);
|
||||
|
||||
const int32_t* indices() const { return indices_; }
|
||||
int32_t length() const;
|
||||
|
||||
private:
|
||||
std::shared_ptr<ArrayData> data_;
|
||||
const int32_t* indices_;
|
||||
};
|
||||
|
||||
/// \brief A unit of work for kernel execution. It contains a collection of
|
||||
/// Array and Scalar values and an optional SelectionVector indicating that
|
||||
/// there is an unmaterialized filter that either must be materialized, or (if
|
||||
/// the kernel supports it) pushed down into the kernel implementation.
|
||||
///
|
||||
/// ExecBatch is semantically similar to RecordBatch in that in a SQL context
|
||||
/// it represents a collection of records, but constant "columns" are
|
||||
/// represented by Scalar values rather than having to be converted into arrays
|
||||
/// with repeated values.
|
||||
///
|
||||
/// TODO: Datum uses arrow/util/variant.h which may be a bit heavier-weight
|
||||
/// than is desirable for this class. Microbenchmarks would help determine for
|
||||
/// sure. See ARROW-8928.
|
||||
|
||||
/// \addtogroup execnode-components
|
||||
/// @{
|
||||
|
||||
struct ARROW_EXPORT ExecBatch {
|
||||
ExecBatch() = default;
|
||||
ExecBatch(std::vector<Datum> values, int64_t length)
|
||||
: values(std::move(values)), length(length) {}
|
||||
|
||||
explicit ExecBatch(const RecordBatch& batch);
|
||||
|
||||
static Result<ExecBatch> Make(std::vector<Datum> values);
|
||||
|
||||
Result<std::shared_ptr<RecordBatch>> ToRecordBatch(
|
||||
std::shared_ptr<Schema> schema, MemoryPool* pool = default_memory_pool()) const;
|
||||
|
||||
/// The values representing positional arguments to be passed to a kernel's
|
||||
/// exec function for processing.
|
||||
std::vector<Datum> values;
|
||||
|
||||
/// A deferred filter represented as an array of indices into the values.
|
||||
///
|
||||
/// For example, the filter [true, true, false, true] would be represented as
|
||||
/// the selection vector [0, 1, 3]. When the selection vector is set,
|
||||
/// ExecBatch::length is equal to the length of this array.
|
||||
std::shared_ptr<SelectionVector> selection_vector;
|
||||
|
||||
/// A predicate Expression guaranteed to evaluate to true for all rows in this batch.
|
||||
Expression guarantee = literal(true);
|
||||
|
||||
/// The semantic length of the ExecBatch. When the values are all scalars,
|
||||
/// the length should be set to 1 for non-aggregate kernels, otherwise the
|
||||
/// length is taken from the array values, except when there is a selection
|
||||
/// vector. When there is a selection vector set, the length of the batch is
|
||||
/// the length of the selection. Aggregate kernels can have an ExecBatch
|
||||
/// formed by projecting just the partition columns from a batch in which
|
||||
/// case, it would have scalar rows with length greater than 1.
|
||||
///
|
||||
/// If the array values are of length 0 then the length is 0 regardless of
|
||||
/// whether any values are Scalar.
|
||||
int64_t length = 0;
|
||||
|
||||
/// \brief The sum of bytes in each buffer referenced by the batch
|
||||
///
|
||||
/// Note: Scalars are not counted
|
||||
/// Note: Some values may referenced only part of a buffer, for
|
||||
/// example, an array with an offset. The actual data
|
||||
/// visible to this batch will be smaller than the total
|
||||
/// buffer size in this case.
|
||||
int64_t TotalBufferSize() const;
|
||||
|
||||
/// \brief Return the value at the i-th index
|
||||
template <typename index_type>
|
||||
inline const Datum& operator[](index_type i) const {
|
||||
return values[i];
|
||||
}
|
||||
|
||||
bool Equals(const ExecBatch& other) const;
|
||||
|
||||
/// \brief A convenience for the number of values / arguments.
|
||||
int num_values() const { return static_cast<int>(values.size()); }
|
||||
|
||||
ExecBatch Slice(int64_t offset, int64_t length) const;
|
||||
|
||||
/// \brief A convenience for returning the types from the batch.
|
||||
std::vector<TypeHolder> GetTypes() const {
|
||||
std::vector<TypeHolder> result;
|
||||
for (const auto& value : this->values) {
|
||||
result.emplace_back(value.type());
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
std::string ToString() const;
|
||||
};
|
||||
|
||||
inline bool operator==(const ExecBatch& l, const ExecBatch& r) { return l.Equals(r); }
|
||||
inline bool operator!=(const ExecBatch& l, const ExecBatch& r) { return !l.Equals(r); }
|
||||
|
||||
ARROW_EXPORT void PrintTo(const ExecBatch&, std::ostream*);
|
||||
|
||||
struct ExecValue {
|
||||
ArraySpan array = {};
|
||||
const Scalar* scalar = NULLPTR;
|
||||
|
||||
ExecValue(Scalar* scalar) // NOLINT implicit conversion
|
||||
: scalar(scalar) {}
|
||||
|
||||
ExecValue(ArraySpan array) // NOLINT implicit conversion
|
||||
: array(std::move(array)) {}
|
||||
|
||||
ExecValue(const ArrayData& array) { // NOLINT implicit conversion
|
||||
this->array.SetMembers(array);
|
||||
}
|
||||
|
||||
ExecValue() = default;
|
||||
ExecValue(const ExecValue& other) = default;
|
||||
ExecValue& operator=(const ExecValue& other) = default;
|
||||
ExecValue(ExecValue&& other) = default;
|
||||
ExecValue& operator=(ExecValue&& other) = default;
|
||||
|
||||
int64_t length() const { return this->is_array() ? this->array.length : 1; }
|
||||
|
||||
bool is_array() const { return this->scalar == NULLPTR; }
|
||||
bool is_scalar() const { return !this->is_array(); }
|
||||
|
||||
void SetArray(const ArrayData& array) {
|
||||
this->array.SetMembers(array);
|
||||
this->scalar = NULLPTR;
|
||||
}
|
||||
|
||||
void SetScalar(const Scalar* scalar) { this->scalar = scalar; }
|
||||
|
||||
template <typename ExactType>
|
||||
const ExactType& scalar_as() const {
|
||||
return ::arrow::internal::checked_cast<const ExactType&>(*this->scalar);
|
||||
}
|
||||
|
||||
/// XXX: here temporarily for compatibility with datum, see
|
||||
/// e.g. MakeStructExec in scalar_nested.cc
|
||||
int64_t null_count() const {
|
||||
if (this->is_array()) {
|
||||
return this->array.GetNullCount();
|
||||
} else {
|
||||
return this->scalar->is_valid ? 0 : 1;
|
||||
}
|
||||
}
|
||||
|
||||
const DataType* type() const {
|
||||
if (this->is_array()) {
|
||||
return array.type;
|
||||
} else {
|
||||
return scalar->type.get();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
struct ARROW_EXPORT ExecResult {
|
||||
// The default value of the variant is ArraySpan
|
||||
std::variant<ArraySpan, std::shared_ptr<ArrayData>> value;
|
||||
|
||||
int64_t length() const {
|
||||
if (this->is_array_span()) {
|
||||
return this->array_span()->length;
|
||||
} else {
|
||||
return this->array_data()->length;
|
||||
}
|
||||
}
|
||||
|
||||
const DataType* type() const {
|
||||
if (this->is_array_span()) {
|
||||
return this->array_span()->type;
|
||||
} else {
|
||||
return this->array_data()->type.get();
|
||||
}
|
||||
}
|
||||
|
||||
ArraySpan* array_span() const {
|
||||
return const_cast<ArraySpan*>(&std::get<ArraySpan>(this->value));
|
||||
}
|
||||
bool is_array_span() const { return this->value.index() == 0; }
|
||||
|
||||
const std::shared_ptr<ArrayData>& array_data() const {
|
||||
return std::get<std::shared_ptr<ArrayData>>(this->value);
|
||||
}
|
||||
|
||||
bool is_array_data() const { return this->value.index() == 1; }
|
||||
};
|
||||
|
||||
/// \brief A "lightweight" column batch object which contains no
|
||||
/// std::shared_ptr objects and does not have any memory ownership
|
||||
/// semantics. Can represent a view onto an "owning" ExecBatch.
|
||||
struct ARROW_EXPORT ExecSpan {
|
||||
ExecSpan() = default;
|
||||
ExecSpan(const ExecSpan& other) = default;
|
||||
ExecSpan& operator=(const ExecSpan& other) = default;
|
||||
ExecSpan(ExecSpan&& other) = default;
|
||||
ExecSpan& operator=(ExecSpan&& other) = default;
|
||||
|
||||
explicit ExecSpan(std::vector<ExecValue> values, int64_t length)
|
||||
: length(length), values(std::move(values)) {}
|
||||
|
||||
explicit ExecSpan(const ExecBatch& batch) {
|
||||
this->length = batch.length;
|
||||
this->values.resize(batch.values.size());
|
||||
for (size_t i = 0; i < batch.values.size(); ++i) {
|
||||
const Datum& in_value = batch[i];
|
||||
ExecValue* out_value = &this->values[i];
|
||||
if (in_value.is_array()) {
|
||||
out_value->SetArray(*in_value.array());
|
||||
} else {
|
||||
out_value->SetScalar(in_value.scalar().get());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// \brief Return the value at the i-th index
|
||||
template <typename index_type>
|
||||
inline const ExecValue& operator[](index_type i) const {
|
||||
return values[i];
|
||||
}
|
||||
|
||||
/// \brief A convenience for the number of values / arguments.
|
||||
int num_values() const { return static_cast<int>(values.size()); }
|
||||
|
||||
std::vector<TypeHolder> GetTypes() const {
|
||||
std::vector<TypeHolder> result;
|
||||
for (const auto& value : this->values) {
|
||||
result.emplace_back(value.type());
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
ExecBatch ToExecBatch() const {
|
||||
ExecBatch result;
|
||||
result.length = this->length;
|
||||
for (const ExecValue& value : this->values) {
|
||||
if (value.is_array()) {
|
||||
result.values.push_back(value.array.ToArrayData());
|
||||
} else {
|
||||
result.values.push_back(value.scalar->GetSharedPtr());
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
int64_t length = 0;
|
||||
std::vector<ExecValue> values;
|
||||
};
|
||||
|
||||
/// @}
|
||||
|
||||
/// \defgroup compute-call-function One-shot calls to compute functions
|
||||
///
|
||||
/// @{
|
||||
|
||||
/// \brief One-shot invoker for all types of functions.
|
||||
///
|
||||
/// Does kernel dispatch, argument checking, iteration of ChunkedArray inputs,
|
||||
/// and wrapping of outputs.
|
||||
ARROW_EXPORT
|
||||
Result<Datum> CallFunction(const std::string& func_name, const std::vector<Datum>& args,
|
||||
const FunctionOptions* options, ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Variant of CallFunction which uses a function's default options.
|
||||
///
|
||||
/// NB: Some functions require FunctionOptions be provided.
|
||||
ARROW_EXPORT
|
||||
Result<Datum> CallFunction(const std::string& func_name, const std::vector<Datum>& args,
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief One-shot invoker for all types of functions.
|
||||
///
|
||||
/// Does kernel dispatch, argument checking, iteration of ChunkedArray inputs,
|
||||
/// and wrapping of outputs.
|
||||
ARROW_EXPORT
|
||||
Result<Datum> CallFunction(const std::string& func_name, const ExecBatch& batch,
|
||||
const FunctionOptions* options, ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// \brief Variant of CallFunction which uses a function's default options.
|
||||
///
|
||||
/// NB: Some functions require FunctionOptions be provided.
|
||||
ARROW_EXPORT
|
||||
Result<Datum> CallFunction(const std::string& func_name, const ExecBatch& batch,
|
||||
ExecContext* ctx = NULLPTR);
|
||||
|
||||
/// @}
|
||||
|
||||
/// \defgroup compute-function-executor One-shot calls to obtain function executors
|
||||
///
|
||||
/// @{
|
||||
|
||||
/// \brief One-shot executor provider for all types of functions.
|
||||
///
|
||||
/// This function creates and initializes a `FunctionExecutor` appropriate
|
||||
/// for the given function name, input types and function options.
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<FunctionExecutor>> GetFunctionExecutor(
|
||||
const std::string& func_name, std::vector<TypeHolder> in_types,
|
||||
const FunctionOptions* options = NULLPTR, FunctionRegistry* func_registry = NULLPTR);
|
||||
|
||||
/// \brief One-shot executor provider for all types of functions.
|
||||
///
|
||||
/// This function creates and initializes a `FunctionExecutor` appropriate
|
||||
/// for the given function name, input types (taken from the Datum arguments)
|
||||
/// and function options.
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<FunctionExecutor>> GetFunctionExecutor(
|
||||
const std::string& func_name, const std::vector<Datum>& args,
|
||||
const FunctionOptions* options = NULLPTR, FunctionRegistry* func_registry = NULLPTR);
|
||||
|
||||
/// @}
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,57 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/compute/exec.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace util {
|
||||
using arrow::compute::ExecBatch;
|
||||
|
||||
/// \brief A container that accumulates batches until they are ready to
|
||||
/// be processed.
|
||||
class AccumulationQueue {
|
||||
public:
|
||||
AccumulationQueue() : row_count_(0) {}
|
||||
~AccumulationQueue() = default;
|
||||
|
||||
// We should never be copying ExecBatch around
|
||||
AccumulationQueue(const AccumulationQueue&) = delete;
|
||||
AccumulationQueue& operator=(const AccumulationQueue&) = delete;
|
||||
|
||||
AccumulationQueue(AccumulationQueue&& that);
|
||||
AccumulationQueue& operator=(AccumulationQueue&& that);
|
||||
|
||||
void Concatenate(AccumulationQueue&& that);
|
||||
void InsertBatch(ExecBatch batch);
|
||||
int64_t row_count() { return row_count_; }
|
||||
size_t batch_count() { return batches_.size(); }
|
||||
bool empty() const { return batches_.empty(); }
|
||||
void Clear();
|
||||
ExecBatch& operator[](size_t i);
|
||||
|
||||
private:
|
||||
int64_t row_count_;
|
||||
std::vector<ExecBatch> batches_;
|
||||
};
|
||||
|
||||
} // namespace util
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,59 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/compute/api_aggregate.h"
|
||||
#include "arrow/compute/exec.h"
|
||||
#include "arrow/compute/exec/exec_plan.h"
|
||||
#include "arrow/compute/kernel.h"
|
||||
#include "arrow/datum.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace compute {
|
||||
namespace internal {
|
||||
|
||||
/// Internal use only: helper function for testing HashAggregateKernels.
|
||||
/// For public use see arrow::compute::Grouper or create an execution plan
|
||||
/// and use an aggregate node.
|
||||
ARROW_EXPORT
|
||||
Result<Datum> GroupBy(const std::vector<Datum>& arguments, const std::vector<Datum>& keys,
|
||||
const std::vector<Aggregate>& aggregates, bool use_threads = false,
|
||||
ExecContext* ctx = default_exec_context());
|
||||
|
||||
Result<std::vector<const HashAggregateKernel*>> GetKernels(
|
||||
ExecContext* ctx, const std::vector<Aggregate>& aggregates,
|
||||
const std::vector<TypeHolder>& in_types);
|
||||
|
||||
Result<std::vector<std::unique_ptr<KernelState>>> InitKernels(
|
||||
const std::vector<const HashAggregateKernel*>& kernels, ExecContext* ctx,
|
||||
const std::vector<Aggregate>& aggregates, const std::vector<TypeHolder>& in_types);
|
||||
|
||||
Result<FieldVector> ResolveKernels(
|
||||
const std::vector<Aggregate>& aggregates,
|
||||
const std::vector<const HashAggregateKernel*>& kernels,
|
||||
const std::vector<std::unique_ptr<KernelState>>& states, ExecContext* ctx,
|
||||
const std::vector<TypeHolder>& in_types);
|
||||
|
||||
} // namespace internal
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,37 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/compute/exec.h"
|
||||
#include "arrow/compute/exec/options.h"
|
||||
#include "arrow/type.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace compute {
|
||||
namespace asofjoin {
|
||||
|
||||
using AsofJoinKeys = AsofJoinNodeOptions::Keys;
|
||||
|
||||
ARROW_EXPORT Result<std::shared_ptr<Schema>> MakeOutputSchema(
|
||||
const std::vector<std::shared_ptr<Schema>>& input_schema,
|
||||
const std::vector<AsofJoinKeys>& input_keys);
|
||||
|
||||
} // namespace asofjoin
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,44 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#include <cstdint>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "benchmark/benchmark.h"
|
||||
|
||||
#include "arrow/compute/exec.h"
|
||||
#include "arrow/compute/exec/exec_plan.h"
|
||||
#include "arrow/compute/exec/test_util.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
namespace compute {
|
||||
|
||||
Status BenchmarkNodeOverhead(benchmark::State& state, int32_t num_batches,
|
||||
int32_t batch_size, arrow::compute::BatchesWithSchema data,
|
||||
std::vector<arrow::compute::Declaration>& node_declarations);
|
||||
|
||||
Status BenchmarkIsolatedNodeOverhead(benchmark::State& state,
|
||||
arrow::compute::Expression expr, int32_t num_batches,
|
||||
int32_t batch_size,
|
||||
arrow::compute::BatchesWithSchema data,
|
||||
std::string factory_name,
|
||||
arrow::compute::ExecNodeOptions& options);
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,324 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#if defined(ARROW_HAVE_AVX2)
|
||||
#include <immintrin.h>
|
||||
#endif
|
||||
|
||||
#include <atomic>
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include "arrow/compute/exec/partition_util.h"
|
||||
#include "arrow/compute/exec/util.h"
|
||||
#include "arrow/memory_pool.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/status.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace compute {
|
||||
|
||||
// A set of pre-generated bit masks from a 64-bit word.
|
||||
//
|
||||
// It is used to map selected bits of hash to a bit mask that will be used in
|
||||
// a Bloom filter.
|
||||
//
|
||||
// These bit masks need to look random and need to have a similar fractions of
|
||||
// bits set in order for a Bloom filter to have a low false positives rate.
|
||||
//
|
||||
struct ARROW_EXPORT BloomFilterMasks {
|
||||
// Generate all masks as a single bit vector. Each bit offset in this bit
|
||||
// vector corresponds to a single mask.
|
||||
// In each consecutive kBitsPerMask bits, there must be between
|
||||
// kMinBitsSet and kMaxBitsSet bits set.
|
||||
//
|
||||
BloomFilterMasks();
|
||||
|
||||
inline uint64_t mask(int bit_offset) {
|
||||
#if ARROW_LITTLE_ENDIAN
|
||||
return (util::SafeLoadAs<uint64_t>(masks_ + bit_offset / 8) >> (bit_offset % 8)) &
|
||||
kFullMask;
|
||||
#else
|
||||
return (BYTESWAP(util::SafeLoadAs<uint64_t>(masks_ + bit_offset / 8)) >>
|
||||
(bit_offset % 8)) &
|
||||
kFullMask;
|
||||
#endif
|
||||
}
|
||||
|
||||
// Masks are 57 bits long because then they can be accessed at an
|
||||
// arbitrary bit offset using a single unaligned 64-bit load instruction.
|
||||
//
|
||||
static constexpr int kBitsPerMask = 57;
|
||||
static constexpr uint64_t kFullMask = (1ULL << kBitsPerMask) - 1;
|
||||
|
||||
// Minimum and maximum number of bits set in each mask.
|
||||
// This constraint is enforced when generating the bit masks.
|
||||
// Values should be close to each other and chosen as to minimize a Bloom
|
||||
// filter false positives rate.
|
||||
//
|
||||
static constexpr int kMinBitsSet = 4;
|
||||
static constexpr int kMaxBitsSet = 5;
|
||||
|
||||
// Number of generated masks.
|
||||
// Having more masks to choose will improve false positives rate of Bloom
|
||||
// filter but will also use more memory, which may lead to more CPU cache
|
||||
// misses.
|
||||
// The chosen value results in using only a few cache-lines for mask lookups,
|
||||
// while providing a good variety of available bit masks.
|
||||
//
|
||||
static constexpr int kLogNumMasks = 10;
|
||||
static constexpr int kNumMasks = 1 << kLogNumMasks;
|
||||
|
||||
// Data of masks. Masks are stored in a single bit vector. Nth mask is
|
||||
// kBitsPerMask bits starting at bit offset N.
|
||||
//
|
||||
static constexpr int kTotalBytes = (kNumMasks + 64) / 8;
|
||||
uint8_t masks_[kTotalBytes];
|
||||
};
|
||||
|
||||
// A variant of a blocked Bloom filter implementation.
|
||||
// A Bloom filter is a data structure that provides approximate membership test
|
||||
// functionality based only on the hash of the key. Membership test may return
|
||||
// false positives but not false negatives. Approximation of the result allows
|
||||
// in general case (for arbitrary data types of keys) to save on both memory and
|
||||
// lookup cost compared to the accurate membership test.
|
||||
// The accurate test may sometimes still be cheaper for a specific data types
|
||||
// and inputs, e.g. integers from a small range.
|
||||
//
|
||||
// This blocked Bloom filter is optimized for use in hash joins, to achieve a
|
||||
// good balance between the size of the filter, the cost of its building and
|
||||
// querying and the rate of false positives.
|
||||
//
|
||||
class ARROW_EXPORT BlockedBloomFilter {
|
||||
friend class BloomFilterBuilder_SingleThreaded;
|
||||
friend class BloomFilterBuilder_Parallel;
|
||||
|
||||
public:
|
||||
BlockedBloomFilter() : log_num_blocks_(0), num_blocks_(0), blocks_(NULLPTR) {}
|
||||
|
||||
inline bool Find(uint64_t hash) const {
|
||||
uint64_t m = mask(hash);
|
||||
uint64_t b = blocks_[block_id(hash)];
|
||||
return (b & m) == m;
|
||||
}
|
||||
|
||||
// Uses SIMD if available for smaller Bloom filters.
|
||||
// Uses memory prefetching for larger Bloom filters.
|
||||
//
|
||||
void Find(int64_t hardware_flags, int64_t num_rows, const uint32_t* hashes,
|
||||
uint8_t* result_bit_vector, bool enable_prefetch = true) const;
|
||||
void Find(int64_t hardware_flags, int64_t num_rows, const uint64_t* hashes,
|
||||
uint8_t* result_bit_vector, bool enable_prefetch = true) const;
|
||||
|
||||
int log_num_blocks() const { return log_num_blocks_; }
|
||||
|
||||
int NumHashBitsUsed() const;
|
||||
|
||||
bool IsSameAs(const BlockedBloomFilter* other) const;
|
||||
|
||||
int64_t NumBitsSet() const;
|
||||
|
||||
// Folding of a block Bloom filter after the initial version
|
||||
// has been built.
|
||||
//
|
||||
// One of the parameters for creation of Bloom filter is the number
|
||||
// of bits allocated for it. The more bits allocated, the lower the
|
||||
// probability of false positives. A good heuristic is to aim for
|
||||
// half of the bits set in the constructed Bloom filter. This should
|
||||
// result in a good trade off between size (and following cost of
|
||||
// memory accesses) and false positives rate.
|
||||
//
|
||||
// There might have been many duplicate keys in the input provided
|
||||
// to Bloom filter builder. In that case the resulting bit vector
|
||||
// would be more sparse then originally intended. It is possible to
|
||||
// easily correct that and cut in half the size of Bloom filter
|
||||
// after it has already been constructed. The process to do that is
|
||||
// approximately equal to OR-ing bits from upper and lower half (the
|
||||
// way we address these bits when inserting or querying a hash makes
|
||||
// such folding in half possible).
|
||||
//
|
||||
// We will keep folding as long as the fraction of bits set is less
|
||||
// than 1/4. The resulting bit vector density should be in the [1/4,
|
||||
// 1/2) range.
|
||||
//
|
||||
void Fold();
|
||||
|
||||
private:
|
||||
Status CreateEmpty(int64_t num_rows_to_insert, MemoryPool* pool);
|
||||
|
||||
inline void Insert(uint64_t hash) {
|
||||
uint64_t m = mask(hash);
|
||||
uint64_t& b = blocks_[block_id(hash)];
|
||||
b |= m;
|
||||
}
|
||||
|
||||
void Insert(int64_t hardware_flags, int64_t num_rows, const uint32_t* hashes);
|
||||
void Insert(int64_t hardware_flags, int64_t num_rows, const uint64_t* hashes);
|
||||
|
||||
inline uint64_t mask(uint64_t hash) const {
|
||||
// The lowest bits of hash are used to pick mask index.
|
||||
//
|
||||
int mask_id = static_cast<int>(hash & (BloomFilterMasks::kNumMasks - 1));
|
||||
uint64_t result = masks_.mask(mask_id);
|
||||
|
||||
// The next set of hash bits is used to pick the amount of bit
|
||||
// rotation of the mask.
|
||||
//
|
||||
int rotation = (hash >> BloomFilterMasks::kLogNumMasks) & 63;
|
||||
result = ROTL64(result, rotation);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
inline int64_t block_id(uint64_t hash) const {
|
||||
// The next set of hash bits following the bits used to select a
|
||||
// mask is used to pick block id (index of 64-bit word in a bit
|
||||
// vector).
|
||||
//
|
||||
return (hash >> (BloomFilterMasks::kLogNumMasks + 6)) & (num_blocks_ - 1);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline void InsertImp(int64_t num_rows, const T* hashes);
|
||||
|
||||
template <typename T>
|
||||
inline void FindImp(int64_t num_rows, const T* hashes, uint8_t* result_bit_vector,
|
||||
bool enable_prefetch) const;
|
||||
|
||||
void SingleFold(int num_folds);
|
||||
|
||||
#if defined(ARROW_HAVE_AVX2)
|
||||
inline __m256i mask_avx2(__m256i hash) const;
|
||||
inline __m256i block_id_avx2(__m256i hash) const;
|
||||
int64_t Insert_avx2(int64_t num_rows, const uint32_t* hashes);
|
||||
int64_t Insert_avx2(int64_t num_rows, const uint64_t* hashes);
|
||||
template <typename T>
|
||||
int64_t InsertImp_avx2(int64_t num_rows, const T* hashes);
|
||||
int64_t Find_avx2(int64_t num_rows, const uint32_t* hashes,
|
||||
uint8_t* result_bit_vector) const;
|
||||
int64_t Find_avx2(int64_t num_rows, const uint64_t* hashes,
|
||||
uint8_t* result_bit_vector) const;
|
||||
template <typename T>
|
||||
int64_t FindImp_avx2(int64_t num_rows, const T* hashes,
|
||||
uint8_t* result_bit_vector) const;
|
||||
#endif
|
||||
|
||||
bool UsePrefetch() const {
|
||||
return num_blocks_ * sizeof(uint64_t) > kPrefetchLimitBytes;
|
||||
}
|
||||
|
||||
static constexpr int64_t kPrefetchLimitBytes = 256 * 1024;
|
||||
|
||||
static BloomFilterMasks masks_;
|
||||
|
||||
// Total number of bits used by block Bloom filter must be a power
|
||||
// of 2.
|
||||
//
|
||||
int log_num_blocks_;
|
||||
int64_t num_blocks_;
|
||||
|
||||
// Buffer allocated to store an array of power of 2 64-bit blocks.
|
||||
//
|
||||
std::shared_ptr<Buffer> buf_;
|
||||
// Pointer to mutable data owned by Buffer
|
||||
//
|
||||
uint64_t* blocks_;
|
||||
};
|
||||
|
||||
// We have two separate implementations of building a Bloom filter, multi-threaded and
|
||||
// single-threaded.
|
||||
//
|
||||
// Single threaded version is useful in two ways:
|
||||
// a) It allows to verify parallel implementation in tests (the single threaded one is
|
||||
// simpler and can be used as the source of truth).
|
||||
// b) It is preferred for small and medium size Bloom filters, because it skips extra
|
||||
// synchronization related steps from parallel variant (partitioning and taking locks).
|
||||
//
|
||||
enum class BloomFilterBuildStrategy {
|
||||
SINGLE_THREADED = 0,
|
||||
PARALLEL = 1,
|
||||
};
|
||||
|
||||
class ARROW_EXPORT BloomFilterBuilder {
|
||||
public:
|
||||
virtual ~BloomFilterBuilder() = default;
|
||||
virtual Status Begin(size_t num_threads, int64_t hardware_flags, MemoryPool* pool,
|
||||
int64_t num_rows, int64_t num_batches,
|
||||
BlockedBloomFilter* build_target) = 0;
|
||||
virtual int64_t num_tasks() const { return 0; }
|
||||
virtual Status PushNextBatch(size_t thread_index, int64_t num_rows,
|
||||
const uint32_t* hashes) = 0;
|
||||
virtual Status PushNextBatch(size_t thread_index, int64_t num_rows,
|
||||
const uint64_t* hashes) = 0;
|
||||
virtual void CleanUp() {}
|
||||
static std::unique_ptr<BloomFilterBuilder> Make(BloomFilterBuildStrategy strategy);
|
||||
};
|
||||
|
||||
class ARROW_EXPORT BloomFilterBuilder_SingleThreaded : public BloomFilterBuilder {
|
||||
public:
|
||||
Status Begin(size_t num_threads, int64_t hardware_flags, MemoryPool* pool,
|
||||
int64_t num_rows, int64_t num_batches,
|
||||
BlockedBloomFilter* build_target) override;
|
||||
|
||||
Status PushNextBatch(size_t /*thread_index*/, int64_t num_rows,
|
||||
const uint32_t* hashes) override;
|
||||
|
||||
Status PushNextBatch(size_t /*thread_index*/, int64_t num_rows,
|
||||
const uint64_t* hashes) override;
|
||||
|
||||
private:
|
||||
template <typename T>
|
||||
void PushNextBatchImp(int64_t num_rows, const T* hashes);
|
||||
|
||||
int64_t hardware_flags_;
|
||||
BlockedBloomFilter* build_target_;
|
||||
};
|
||||
|
||||
class ARROW_EXPORT BloomFilterBuilder_Parallel : public BloomFilterBuilder {
|
||||
public:
|
||||
Status Begin(size_t num_threads, int64_t hardware_flags, MemoryPool* pool,
|
||||
int64_t num_rows, int64_t num_batches,
|
||||
BlockedBloomFilter* build_target) override;
|
||||
|
||||
Status PushNextBatch(size_t thread_id, int64_t num_rows,
|
||||
const uint32_t* hashes) override;
|
||||
|
||||
Status PushNextBatch(size_t thread_id, int64_t num_rows,
|
||||
const uint64_t* hashes) override;
|
||||
|
||||
void CleanUp() override;
|
||||
|
||||
private:
|
||||
template <typename T>
|
||||
void PushNextBatchImp(size_t thread_id, int64_t num_rows, const T* hashes);
|
||||
|
||||
int64_t hardware_flags_;
|
||||
BlockedBloomFilter* build_target_;
|
||||
int log_num_prtns_;
|
||||
struct ThreadLocalState {
|
||||
std::vector<uint32_t> partitioned_hashes_32;
|
||||
std::vector<uint64_t> partitioned_hashes_64;
|
||||
std::vector<uint16_t> partition_ranges;
|
||||
std::vector<int> unprocessed_partition_ids;
|
||||
};
|
||||
std::vector<ThreadLocalState> thread_local_states_;
|
||||
PartitionLocks prtn_locks_;
|
||||
};
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,591 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <optional>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/compute/exec.h"
|
||||
#include "arrow/compute/type_fwd.h"
|
||||
#include "arrow/type_fwd.h"
|
||||
#include "arrow/util/future.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/tracing.h"
|
||||
#include "arrow/util/type_fwd.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
namespace compute {
|
||||
|
||||
/// \addtogroup execnode-components
|
||||
/// @{
|
||||
|
||||
class ARROW_EXPORT ExecPlan : public std::enable_shared_from_this<ExecPlan> {
|
||||
public:
|
||||
// This allows operators to rely on signed 16-bit indices
|
||||
static const uint32_t kMaxBatchSize = 1 << 15;
|
||||
using NodeVector = std::vector<ExecNode*>;
|
||||
|
||||
virtual ~ExecPlan() = default;
|
||||
|
||||
QueryContext* query_context();
|
||||
|
||||
/// Make an empty exec plan
|
||||
static Result<std::shared_ptr<ExecPlan>> Make(
|
||||
QueryOptions options, ExecContext exec_context = *threaded_exec_context(),
|
||||
std::shared_ptr<const KeyValueMetadata> metadata = NULLPTR);
|
||||
|
||||
static Result<std::shared_ptr<ExecPlan>> Make(
|
||||
ExecContext exec_context = *threaded_exec_context(),
|
||||
std::shared_ptr<const KeyValueMetadata> metadata = NULLPTR);
|
||||
|
||||
static Result<std::shared_ptr<ExecPlan>> Make(
|
||||
QueryOptions options, ExecContext* exec_context,
|
||||
std::shared_ptr<const KeyValueMetadata> metadata = NULLPTR);
|
||||
|
||||
static Result<std::shared_ptr<ExecPlan>> Make(
|
||||
ExecContext* exec_context,
|
||||
std::shared_ptr<const KeyValueMetadata> metadata = NULLPTR);
|
||||
|
||||
ExecNode* AddNode(std::unique_ptr<ExecNode> node);
|
||||
|
||||
template <typename Node, typename... Args>
|
||||
Node* EmplaceNode(Args&&... args) {
|
||||
std::unique_ptr<Node> node{new Node{std::forward<Args>(args)...}};
|
||||
auto out = node.get();
|
||||
AddNode(std::move(node));
|
||||
return out;
|
||||
}
|
||||
|
||||
/// The initial inputs
|
||||
const NodeVector& sources() const;
|
||||
|
||||
/// The final outputs
|
||||
const NodeVector& sinks() const;
|
||||
|
||||
Status Validate();
|
||||
|
||||
/// \brief Start producing on all nodes
|
||||
///
|
||||
/// Nodes are started in reverse topological order, such that any node
|
||||
/// is started before all of its inputs.
|
||||
Status StartProducing();
|
||||
|
||||
/// \brief Stop producing on all nodes
|
||||
///
|
||||
/// Nodes are stopped in topological order, such that any node
|
||||
/// is stopped before all of its outputs.
|
||||
void StopProducing();
|
||||
|
||||
/// \brief A future which will be marked finished when all nodes have stopped producing.
|
||||
Future<> finished();
|
||||
|
||||
/// \brief Return whether the plan has non-empty metadata
|
||||
bool HasMetadata() const;
|
||||
|
||||
/// \brief Return the plan's attached metadata
|
||||
std::shared_ptr<const KeyValueMetadata> metadata() const;
|
||||
|
||||
std::string ToString() const;
|
||||
};
|
||||
|
||||
class ARROW_EXPORT ExecNode {
|
||||
public:
|
||||
using NodeVector = std::vector<ExecNode*>;
|
||||
|
||||
virtual ~ExecNode() = default;
|
||||
|
||||
virtual const char* kind_name() const = 0;
|
||||
|
||||
// The number of inputs/outputs expected by this node
|
||||
int num_inputs() const { return static_cast<int>(inputs_.size()); }
|
||||
int num_outputs() const { return num_outputs_; }
|
||||
|
||||
/// This node's predecessors in the exec plan
|
||||
const NodeVector& inputs() const { return inputs_; }
|
||||
|
||||
/// \brief Labels identifying the function of each input.
|
||||
const std::vector<std::string>& input_labels() const { return input_labels_; }
|
||||
|
||||
/// This node's successors in the exec plan
|
||||
const NodeVector& outputs() const { return outputs_; }
|
||||
|
||||
/// The datatypes for batches produced by this node
|
||||
const std::shared_ptr<Schema>& output_schema() const { return output_schema_; }
|
||||
|
||||
/// This node's exec plan
|
||||
ExecPlan* plan() { return plan_; }
|
||||
|
||||
/// \brief An optional label, for display and debugging
|
||||
///
|
||||
/// There is no guarantee that this value is non-empty or unique.
|
||||
const std::string& label() const { return label_; }
|
||||
void SetLabel(std::string label) { label_ = std::move(label); }
|
||||
|
||||
Status Validate() const;
|
||||
|
||||
/// Upstream API:
|
||||
/// These functions are called by input nodes that want to inform this node
|
||||
/// about an updated condition (a new input batch, an error, an impeding
|
||||
/// end of stream).
|
||||
///
|
||||
/// Implementation rules:
|
||||
/// - these may be called anytime after StartProducing() has succeeded
|
||||
/// (and even during or after StopProducing())
|
||||
/// - these may be called concurrently
|
||||
/// - these are allowed to call back into PauseProducing(), ResumeProducing()
|
||||
/// and StopProducing()
|
||||
|
||||
/// Transfer input batch to ExecNode
|
||||
virtual void InputReceived(ExecNode* input, ExecBatch batch) = 0;
|
||||
|
||||
/// Signal error to ExecNode
|
||||
virtual void ErrorReceived(ExecNode* input, Status error) = 0;
|
||||
|
||||
/// Mark the inputs finished after the given number of batches.
|
||||
///
|
||||
/// This may be called before all inputs are received. This simply fixes
|
||||
/// the total number of incoming batches for an input, so that the ExecNode
|
||||
/// knows when it has received all input, regardless of order.
|
||||
virtual void InputFinished(ExecNode* input, int total_batches) = 0;
|
||||
|
||||
/// \brief Perform any needed initialization
|
||||
///
|
||||
/// This hook performs any actions in between creation of ExecPlan and the call to
|
||||
/// StartProducing. An example could be Bloom filter pushdown. The order of ExecNodes
|
||||
/// that executes this method is undefined, but the calls are made synchronously.
|
||||
///
|
||||
/// At this point a node can rely on all inputs & outputs (and the input schemas)
|
||||
/// being well defined.
|
||||
virtual Status Init();
|
||||
|
||||
/// Lifecycle API:
|
||||
/// - start / stop to initiate and terminate production
|
||||
/// - pause / resume to apply backpressure
|
||||
///
|
||||
/// Implementation rules:
|
||||
/// - StartProducing() should not recurse into the inputs, as it is
|
||||
/// handled by ExecPlan::StartProducing()
|
||||
/// - PauseProducing(), ResumeProducing(), StopProducing() may be called
|
||||
/// concurrently (but only after StartProducing() has returned successfully)
|
||||
/// - PauseProducing(), ResumeProducing(), StopProducing() may be called
|
||||
/// by the downstream nodes' InputReceived(), ErrorReceived(), InputFinished()
|
||||
/// methods
|
||||
/// - StopProducing() should recurse into the inputs
|
||||
/// - StopProducing() must be idempotent
|
||||
|
||||
// XXX What happens if StartProducing() calls an output's InputReceived()
|
||||
// synchronously, and InputReceived() decides to call back into StopProducing()
|
||||
// (or PauseProducing()) because it received enough data?
|
||||
//
|
||||
// Right now, since synchronous calls happen in both directions (input to
|
||||
// output and then output to input), a node must be careful to be reentrant
|
||||
// against synchronous calls from its output, *and* also concurrent calls from
|
||||
// other threads. The most reliable solution is to update the internal state
|
||||
// first, and notify outputs only at the end.
|
||||
//
|
||||
// Alternate rules:
|
||||
// - StartProducing(), ResumeProducing() can call synchronously into
|
||||
// its ouputs' consuming methods (InputReceived() etc.)
|
||||
// - InputReceived(), ErrorReceived(), InputFinished() can call asynchronously
|
||||
// into its inputs' PauseProducing(), StopProducing()
|
||||
//
|
||||
// Alternate API:
|
||||
// - InputReceived(), ErrorReceived(), InputFinished() return a ProductionHint
|
||||
// enum: either None (default), PauseProducing, ResumeProducing, StopProducing
|
||||
// - A method allows passing a ProductionHint asynchronously from an output node
|
||||
// (replacing PauseProducing(), ResumeProducing(), StopProducing())
|
||||
|
||||
// Concurrent calls to PauseProducing and ResumeProducing can be hard to sequence
|
||||
// as they may travel at different speeds through the plan.
|
||||
//
|
||||
// For example, consider a resume that comes quickly after a pause. If the source
|
||||
// receives the resume before the pause the source may think the destination is full
|
||||
// and halt production which would lead to deadlock.
|
||||
//
|
||||
// To resolve this a counter is sent for all calls to pause/resume. Only the call with
|
||||
// the highest counter value is valid. So if a call to PauseProducing(5) comes after
|
||||
// a call to ResumeProducing(6) then the source should continue producing.
|
||||
//
|
||||
// If a node has multiple outputs it should emit a new counter value to its inputs
|
||||
// whenever any of its outputs changes which means the counters sent to inputs may be
|
||||
// larger than the counters received on its outputs.
|
||||
//
|
||||
// A node with multiple outputs will also need to ensure it is applying backpressure if
|
||||
// any of its outputs is asking to pause
|
||||
|
||||
/// \brief Start producing
|
||||
///
|
||||
/// This must only be called once. If this fails, then other lifecycle
|
||||
/// methods must not be called.
|
||||
///
|
||||
/// This is typically called automatically by ExecPlan::StartProducing().
|
||||
virtual Status StartProducing() = 0;
|
||||
|
||||
/// \brief Pause producing temporarily
|
||||
///
|
||||
/// \param output Pointer to the output that is full
|
||||
/// \param counter Counter used to sequence calls to pause/resume
|
||||
///
|
||||
/// This call is a hint that an output node is currently not willing
|
||||
/// to receive data.
|
||||
///
|
||||
/// This may be called any number of times after StartProducing() succeeds.
|
||||
/// However, the node is still free to produce data (which may be difficult
|
||||
/// to prevent anyway if data is produced using multiple threads).
|
||||
virtual void PauseProducing(ExecNode* output, int32_t counter) = 0;
|
||||
|
||||
/// \brief Resume producing after a temporary pause
|
||||
///
|
||||
/// \param output Pointer to the output that is now free
|
||||
/// \param counter Counter used to sequence calls to pause/resume
|
||||
///
|
||||
/// This call is a hint that an output node is willing to receive data again.
|
||||
///
|
||||
/// This may be called any number of times after StartProducing() succeeds.
|
||||
virtual void ResumeProducing(ExecNode* output, int32_t counter) = 0;
|
||||
|
||||
/// \brief Stop producing definitively to a single output
|
||||
///
|
||||
/// This call is a hint that an output node has completed and is not willing
|
||||
/// to receive any further data.
|
||||
virtual void StopProducing(ExecNode* output) = 0;
|
||||
|
||||
/// \brief Stop producing definitively to all outputs
|
||||
virtual void StopProducing() = 0;
|
||||
|
||||
/// \brief A future which will be marked finished when this node has stopped producing.
|
||||
virtual Future<> finished() { return finished_; }
|
||||
|
||||
std::string ToString(int indent = 0) const;
|
||||
|
||||
protected:
|
||||
ExecNode(ExecPlan* plan, NodeVector inputs, std::vector<std::string> input_labels,
|
||||
std::shared_ptr<Schema> output_schema, int num_outputs);
|
||||
|
||||
// A helper method to send an error status to all outputs.
|
||||
// Returns true if the status was an error.
|
||||
bool ErrorIfNotOk(Status status);
|
||||
|
||||
/// Provide extra info to include in the string representation.
|
||||
virtual std::string ToStringExtra(int indent) const;
|
||||
|
||||
ExecPlan* plan_;
|
||||
std::string label_;
|
||||
|
||||
NodeVector inputs_;
|
||||
std::vector<std::string> input_labels_;
|
||||
|
||||
std::shared_ptr<Schema> output_schema_;
|
||||
int num_outputs_;
|
||||
NodeVector outputs_;
|
||||
|
||||
// Future to sync finished
|
||||
Future<> finished_ = Future<>::Make();
|
||||
|
||||
util::tracing::Span span_;
|
||||
};
|
||||
|
||||
/// \brief An extensible registry for factories of ExecNodes
|
||||
class ARROW_EXPORT ExecFactoryRegistry {
|
||||
public:
|
||||
using Factory = std::function<Result<ExecNode*>(ExecPlan*, std::vector<ExecNode*>,
|
||||
const ExecNodeOptions&)>;
|
||||
|
||||
virtual ~ExecFactoryRegistry() = default;
|
||||
|
||||
/// \brief Get the named factory from this registry
|
||||
///
|
||||
/// will raise if factory_name is not found
|
||||
virtual Result<Factory> GetFactory(const std::string& factory_name) = 0;
|
||||
|
||||
/// \brief Add a factory to this registry with the provided name
|
||||
///
|
||||
/// will raise if factory_name is already in the registry
|
||||
virtual Status AddFactory(std::string factory_name, Factory factory) = 0;
|
||||
};
|
||||
|
||||
/// The default registry, which includes built-in factories.
|
||||
ARROW_EXPORT
|
||||
ExecFactoryRegistry* default_exec_factory_registry();
|
||||
|
||||
/// \brief Construct an ExecNode using the named factory
|
||||
inline Result<ExecNode*> MakeExecNode(
|
||||
const std::string& factory_name, ExecPlan* plan, std::vector<ExecNode*> inputs,
|
||||
const ExecNodeOptions& options,
|
||||
ExecFactoryRegistry* registry = default_exec_factory_registry()) {
|
||||
ARROW_ASSIGN_OR_RAISE(auto factory, registry->GetFactory(factory_name));
|
||||
return factory(plan, std::move(inputs), options);
|
||||
}
|
||||
|
||||
/// \brief Helper class for declaring sets of ExecNodes efficiently
|
||||
///
|
||||
/// A Declaration represents an unconstructed ExecNode (and potentially more since its
|
||||
/// inputs may also be Declarations). The node can be constructed and added to a plan
|
||||
/// with Declaration::AddToPlan, which will recursively construct any inputs as necessary.
|
||||
struct ARROW_EXPORT Declaration {
|
||||
using Input = std::variant<ExecNode*, Declaration>;
|
||||
|
||||
Declaration() {}
|
||||
|
||||
Declaration(std::string factory_name, std::vector<Input> inputs,
|
||||
std::shared_ptr<ExecNodeOptions> options, std::string label)
|
||||
: factory_name{std::move(factory_name)},
|
||||
inputs{std::move(inputs)},
|
||||
options{std::move(options)},
|
||||
label{std::move(label)} {}
|
||||
|
||||
template <typename Options>
|
||||
Declaration(std::string factory_name, std::vector<Input> inputs, Options options,
|
||||
std::string label)
|
||||
: Declaration{std::move(factory_name), std::move(inputs),
|
||||
std::shared_ptr<ExecNodeOptions>(
|
||||
std::make_shared<Options>(std::move(options))),
|
||||
std::move(label)} {}
|
||||
|
||||
template <typename Options>
|
||||
Declaration(std::string factory_name, std::vector<Input> inputs, Options options)
|
||||
: Declaration{std::move(factory_name), std::move(inputs), std::move(options),
|
||||
/*label=*/""} {}
|
||||
|
||||
template <typename Options>
|
||||
Declaration(std::string factory_name, Options options)
|
||||
: Declaration{std::move(factory_name), {}, std::move(options), /*label=*/""} {}
|
||||
|
||||
template <typename Options>
|
||||
Declaration(std::string factory_name, Options options, std::string label)
|
||||
: Declaration{std::move(factory_name), {}, std::move(options), std::move(label)} {}
|
||||
|
||||
/// \brief Convenience factory for the common case of a simple sequence of nodes.
|
||||
///
|
||||
/// Each of decls will be appended to the inputs of the subsequent declaration,
|
||||
/// and the final modified declaration will be returned.
|
||||
///
|
||||
/// Without this convenience factory, constructing a sequence would require explicit,
|
||||
/// difficult-to-read nesting:
|
||||
///
|
||||
/// Declaration{"n3",
|
||||
/// {
|
||||
/// Declaration{"n2",
|
||||
/// {
|
||||
/// Declaration{"n1",
|
||||
/// {
|
||||
/// Declaration{"n0", N0Opts{}},
|
||||
/// },
|
||||
/// N1Opts{}},
|
||||
/// },
|
||||
/// N2Opts{}},
|
||||
/// },
|
||||
/// N3Opts{}};
|
||||
///
|
||||
/// An equivalent Declaration can be constructed more tersely using Sequence:
|
||||
///
|
||||
/// Declaration::Sequence({
|
||||
/// {"n0", N0Opts{}},
|
||||
/// {"n1", N1Opts{}},
|
||||
/// {"n2", N2Opts{}},
|
||||
/// {"n3", N3Opts{}},
|
||||
/// });
|
||||
static Declaration Sequence(std::vector<Declaration> decls);
|
||||
|
||||
Result<ExecNode*> AddToPlan(ExecPlan* plan, ExecFactoryRegistry* registry =
|
||||
default_exec_factory_registry()) const;
|
||||
|
||||
// Validate a declaration
|
||||
bool IsValid(ExecFactoryRegistry* registry = default_exec_factory_registry()) const;
|
||||
|
||||
std::string factory_name;
|
||||
std::vector<Input> inputs;
|
||||
std::shared_ptr<ExecNodeOptions> options;
|
||||
std::string label;
|
||||
};
|
||||
|
||||
/// \brief Utility method to run a declaration and collect the results into a table
|
||||
///
|
||||
/// \param declaration A declaration describing the plan to run
|
||||
/// \param use_threads If `use_threads` is false then all CPU work will be done on the
|
||||
/// calling thread. I/O tasks will still happen on the I/O executor
|
||||
/// and may be multi-threaded (but should not use significant CPU
|
||||
/// resources).
|
||||
/// \param memory_pool The memory pool to use for allocations made while running the plan.
|
||||
/// \param function_registry The function registry to use for function execution. If null
|
||||
/// then the default function registry will be used.
|
||||
///
|
||||
/// This method will add a sink node to the declaration to collect results into a
|
||||
/// table. It will then create an ExecPlan from the declaration, start the exec plan,
|
||||
/// block until the plan has finished, and return the created table.
|
||||
ARROW_EXPORT Result<std::shared_ptr<Table>> DeclarationToTable(
|
||||
Declaration declaration, bool use_threads = true,
|
||||
MemoryPool* memory_pool = default_memory_pool(),
|
||||
FunctionRegistry* function_registry = NULLPTR);
|
||||
|
||||
/// \brief Asynchronous version of \see DeclarationToTable
|
||||
///
|
||||
/// \param declaration A declaration describing the plan to run
|
||||
/// \param use_threads The behavior of use_threads is slightly different than the
|
||||
/// synchronous version since we cannot run synchronously on the
|
||||
/// calling thread. Instead, if use_threads=false then a new thread
|
||||
/// pool will be created with a single thread and this will be used for
|
||||
/// all compute work.
|
||||
/// \param memory_pool The memory pool to use for allocations made while running the plan.
|
||||
/// \param function_registry The function registry to use for function execution. If null
|
||||
/// then the default function registry will be used.
|
||||
ARROW_EXPORT Future<std::shared_ptr<Table>> DeclarationToTableAsync(
|
||||
Declaration declaration, bool use_threads = true,
|
||||
MemoryPool* memory_pool = default_memory_pool(),
|
||||
FunctionRegistry* function_registry = NULLPTR);
|
||||
|
||||
/// \brief Overload of \see DeclarationToTableAsync accepting a custom exec context
|
||||
///
|
||||
/// The executor must be specified (cannot be null) and must be kept alive until the
|
||||
/// returned future finishes.
|
||||
ARROW_EXPORT Future<std::shared_ptr<Table>> DeclarationToTableAsync(
|
||||
Declaration declaration, ExecContext custom_exec_context);
|
||||
|
||||
/// \brief a collection of exec batches with a common schema
|
||||
struct BatchesWithCommonSchema {
|
||||
std::vector<ExecBatch> batches;
|
||||
std::shared_ptr<Schema> schema;
|
||||
};
|
||||
|
||||
/// \brief Utility method to run a declaration and collect the results into ExecBatch
|
||||
/// vector
|
||||
///
|
||||
/// \see DeclarationToTable for details on threading & execution
|
||||
ARROW_EXPORT Result<BatchesWithCommonSchema> DeclarationToExecBatches(
|
||||
Declaration declaration, bool use_threads = true,
|
||||
MemoryPool* memory_pool = default_memory_pool(),
|
||||
FunctionRegistry* function_registry = NULLPTR);
|
||||
|
||||
/// \brief Asynchronous version of \see DeclarationToExecBatches
|
||||
///
|
||||
/// \see DeclarationToTableAsync for details on threading & execution
|
||||
ARROW_EXPORT Future<BatchesWithCommonSchema> DeclarationToExecBatchesAsync(
|
||||
Declaration declaration, bool use_threads = true,
|
||||
MemoryPool* memory_pool = default_memory_pool(),
|
||||
FunctionRegistry* function_registry = NULLPTR);
|
||||
|
||||
/// \brief Overload of \see DeclarationToExecBatchesAsync accepting a custom exec context
|
||||
///
|
||||
/// \see DeclarationToTableAsync for details on threading & execution
|
||||
ARROW_EXPORT Future<BatchesWithCommonSchema> DeclarationToExecBatchesAsync(
|
||||
Declaration declaration, ExecContext custom_exec_context);
|
||||
|
||||
/// \brief Utility method to run a declaration and collect the results into a vector
|
||||
///
|
||||
/// \see DeclarationToTable for details on threading & execution
|
||||
ARROW_EXPORT Result<std::vector<std::shared_ptr<RecordBatch>>> DeclarationToBatches(
|
||||
Declaration declaration, bool use_threads = true,
|
||||
MemoryPool* memory_pool = default_memory_pool(),
|
||||
FunctionRegistry* function_registry = NULLPTR);
|
||||
|
||||
/// \brief Asynchronous version of \see DeclarationToBatches
|
||||
///
|
||||
/// \see DeclarationToTableAsync for details on threading & execution
|
||||
ARROW_EXPORT Future<std::vector<std::shared_ptr<RecordBatch>>> DeclarationToBatchesAsync(
|
||||
Declaration declaration, bool use_threads = true,
|
||||
MemoryPool* memory_pool = default_memory_pool(),
|
||||
FunctionRegistry* function_registry = NULLPTR);
|
||||
|
||||
/// \brief Overload of \see DeclarationToBatchesAsync accepting a custom exec context
|
||||
///
|
||||
/// \see DeclarationToTableAsync for details on threading & execution
|
||||
ARROW_EXPORT Future<std::vector<std::shared_ptr<RecordBatch>>> DeclarationToBatchesAsync(
|
||||
Declaration declaration, ExecContext exec_context);
|
||||
|
||||
/// \brief Utility method to run a declaration and return results as a RecordBatchReader
|
||||
///
|
||||
/// If an exec context is not provided then a default exec context will be used based
|
||||
/// on the value of `use_threads`. If `use_threads` is false then the CPU exeuctor will
|
||||
/// be a serial executor and all CPU work will be done on the calling thread. I/O tasks
|
||||
/// will still happen on the I/O executor and may be multi-threaded.
|
||||
///
|
||||
/// If `use_threads` is false then all CPU work will happen during the calls to
|
||||
/// RecordBatchReader::Next and no CPU work will happen in the background. If
|
||||
/// `use_threads` is true then CPU work will happen on the CPU thread pool and tasks may
|
||||
/// run in between calls to RecordBatchReader::Next. If the returned reader is not
|
||||
/// consumed quickly enough then the plan will eventually pause as the backpressure queue
|
||||
/// fills up.
|
||||
///
|
||||
/// If a custom exec context is provided then the value of `use_threads` will be ignored.
|
||||
ARROW_EXPORT Result<std::unique_ptr<RecordBatchReader>> DeclarationToReader(
|
||||
Declaration declaration, bool use_threads = true,
|
||||
MemoryPool* memory_pool = default_memory_pool(),
|
||||
FunctionRegistry* function_registry = NULLPTR);
|
||||
|
||||
/// \brief Overload of \see DeclarationToReader accepting a custom exec context
|
||||
ARROW_EXPORT Result<std::unique_ptr<RecordBatchReader>> DeclarationToReader(
|
||||
Declaration declaration, ExecContext exec_context);
|
||||
|
||||
/// \brief Utility method to run a declaration and ignore results
|
||||
///
|
||||
/// This can be useful when the data are consumed as part of the plan itself, for
|
||||
/// example, when the plan ends with a write node.
|
||||
///
|
||||
/// \see DeclarationToTable for details on threading & execution
|
||||
ARROW_EXPORT Status DeclarationToStatus(Declaration declaration, bool use_threads = true,
|
||||
MemoryPool* memory_pool = default_memory_pool(),
|
||||
FunctionRegistry* function_registry = NULLPTR);
|
||||
|
||||
/// \brief Asynchronous version of \see DeclarationToStatus
|
||||
///
|
||||
/// This can be useful when the data are consumed as part of the plan itself, for
|
||||
/// example, when the plan ends with a write node.
|
||||
///
|
||||
/// \see DeclarationToTableAsync for details on threading & execution
|
||||
ARROW_EXPORT Future<> DeclarationToStatusAsync(
|
||||
Declaration declaration, bool use_threads = true,
|
||||
MemoryPool* memory_pool = default_memory_pool(),
|
||||
FunctionRegistry* function_registry = NULLPTR);
|
||||
|
||||
/// \brief Overload of \see DeclarationToStatusAsync accepting a custom exec context
|
||||
///
|
||||
/// \see DeclarationToTableAsync for details on threading & execution
|
||||
ARROW_EXPORT Future<> DeclarationToStatusAsync(Declaration declaration,
|
||||
ExecContext exec_context);
|
||||
|
||||
/// \brief Wrap an ExecBatch generator in a RecordBatchReader.
|
||||
///
|
||||
/// The RecordBatchReader does not impose any ordering on emitted batches.
|
||||
ARROW_EXPORT
|
||||
std::shared_ptr<RecordBatchReader> MakeGeneratorReader(
|
||||
std::shared_ptr<Schema>, std::function<Future<std::optional<ExecBatch>>()>,
|
||||
MemoryPool*);
|
||||
|
||||
constexpr int kDefaultBackgroundMaxQ = 32;
|
||||
constexpr int kDefaultBackgroundQRestart = 16;
|
||||
|
||||
/// \brief Make a generator of RecordBatchReaders
|
||||
///
|
||||
/// Useful as a source node for an Exec plan
|
||||
ARROW_EXPORT
|
||||
Result<std::function<Future<std::optional<ExecBatch>>()>> MakeReaderGenerator(
|
||||
std::shared_ptr<RecordBatchReader> reader, arrow::internal::Executor* io_executor,
|
||||
int max_q = kDefaultBackgroundMaxQ, int q_restart = kDefaultBackgroundQRestart);
|
||||
|
||||
/// @}
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,291 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// This API is EXPERIMENTAL.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <variant>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/compute/type_fwd.h"
|
||||
#include "arrow/datum.h"
|
||||
#include "arrow/type_fwd.h"
|
||||
#include "arrow/util/small_vector.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace compute {
|
||||
|
||||
/// \defgroup expression-core Expressions to describe transformations in execution plans
|
||||
///
|
||||
/// @{
|
||||
|
||||
/// An unbound expression which maps a single Datum to another Datum.
|
||||
/// An expression is one of
|
||||
/// - A literal Datum.
|
||||
/// - A reference to a single (potentially nested) field of the input Datum.
|
||||
/// - A call to a compute function, with arguments specified by other Expressions.
|
||||
class ARROW_EXPORT Expression {
|
||||
public:
|
||||
struct Call {
|
||||
std::string function_name;
|
||||
std::vector<Expression> arguments;
|
||||
std::shared_ptr<FunctionOptions> options;
|
||||
// Cached hash value
|
||||
size_t hash;
|
||||
|
||||
// post-Bind properties:
|
||||
std::shared_ptr<Function> function;
|
||||
const Kernel* kernel = NULLPTR;
|
||||
std::shared_ptr<KernelState> kernel_state;
|
||||
TypeHolder type;
|
||||
|
||||
void ComputeHash();
|
||||
};
|
||||
|
||||
std::string ToString() const;
|
||||
bool Equals(const Expression& other) const;
|
||||
size_t hash() const;
|
||||
struct Hash {
|
||||
size_t operator()(const Expression& expr) const { return expr.hash(); }
|
||||
};
|
||||
|
||||
/// Bind this expression to the given input type, looking up Kernels and field types.
|
||||
/// Some expression simplification may be performed and implicit casts will be inserted.
|
||||
/// Any state necessary for execution will be initialized and returned.
|
||||
Result<Expression> Bind(const TypeHolder& in, ExecContext* = NULLPTR) const;
|
||||
Result<Expression> Bind(const Schema& in_schema, ExecContext* = NULLPTR) const;
|
||||
|
||||
// XXX someday
|
||||
// Clone all KernelState in this bound expression. If any function referenced by this
|
||||
// expression has mutable KernelState, it is not safe to execute or apply simplification
|
||||
// passes to it (or copies of it!) from multiple threads. Cloning state produces new
|
||||
// KernelStates where necessary to ensure that Expressions may be manipulated safely
|
||||
// on multiple threads.
|
||||
// Result<ExpressionState> CloneState() const;
|
||||
// Status SetState(ExpressionState);
|
||||
|
||||
/// Return true if all an expression's field references have explicit types
|
||||
/// and all of its functions' kernels are looked up.
|
||||
bool IsBound() const;
|
||||
|
||||
/// Return true if this expression is composed only of Scalar literals, field
|
||||
/// references, and calls to ScalarFunctions.
|
||||
bool IsScalarExpression() const;
|
||||
|
||||
/// Return true if this expression is literal and entirely null.
|
||||
bool IsNullLiteral() const;
|
||||
|
||||
/// Return true if this expression could evaluate to true. Will return true for any
|
||||
/// unbound, non-boolean, or unsimplified Expressions
|
||||
bool IsSatisfiable() const;
|
||||
|
||||
// XXX someday
|
||||
// Result<PipelineGraph> GetPipelines();
|
||||
|
||||
bool is_valid() const { return impl_ != NULLPTR; }
|
||||
|
||||
/// Access a Call or return nullptr if this expression is not a call
|
||||
const Call* call() const;
|
||||
/// Access a Datum or return nullptr if this expression is not a literal
|
||||
const Datum* literal() const;
|
||||
/// Access a FieldRef or return nullptr if this expression is not a field_ref
|
||||
const FieldRef* field_ref() const;
|
||||
|
||||
/// The type to which this expression will evaluate
|
||||
const DataType* type() const;
|
||||
// XXX someday
|
||||
// NullGeneralization::type nullable() const;
|
||||
|
||||
struct Parameter {
|
||||
FieldRef ref;
|
||||
|
||||
// post-bind properties
|
||||
TypeHolder type;
|
||||
::arrow::internal::SmallVector<int, 2> indices;
|
||||
};
|
||||
const Parameter* parameter() const;
|
||||
|
||||
Expression() = default;
|
||||
explicit Expression(Call call);
|
||||
explicit Expression(Datum literal);
|
||||
explicit Expression(Parameter parameter);
|
||||
|
||||
private:
|
||||
using Impl = std::variant<Datum, Parameter, Call>;
|
||||
std::shared_ptr<Impl> impl_;
|
||||
|
||||
ARROW_FRIEND_EXPORT friend bool Identical(const Expression& l, const Expression& r);
|
||||
};
|
||||
|
||||
inline bool operator==(const Expression& l, const Expression& r) { return l.Equals(r); }
|
||||
inline bool operator!=(const Expression& l, const Expression& r) { return !l.Equals(r); }
|
||||
|
||||
ARROW_EXPORT void PrintTo(const Expression&, std::ostream*);
|
||||
|
||||
// Factories
|
||||
|
||||
ARROW_EXPORT
|
||||
Expression literal(Datum lit);
|
||||
|
||||
template <typename Arg>
|
||||
Expression literal(Arg&& arg) {
|
||||
return literal(Datum(std::forward<Arg>(arg)));
|
||||
}
|
||||
|
||||
ARROW_EXPORT
|
||||
Expression field_ref(FieldRef ref);
|
||||
|
||||
ARROW_EXPORT
|
||||
Expression call(std::string function, std::vector<Expression> arguments,
|
||||
std::shared_ptr<FunctionOptions> options = NULLPTR);
|
||||
|
||||
template <typename Options, typename = typename std::enable_if<
|
||||
std::is_base_of<FunctionOptions, Options>::value>::type>
|
||||
Expression call(std::string function, std::vector<Expression> arguments,
|
||||
Options options) {
|
||||
return call(std::move(function), std::move(arguments),
|
||||
std::make_shared<Options>(std::move(options)));
|
||||
}
|
||||
|
||||
/// Assemble a list of all fields referenced by an Expression at any depth.
|
||||
ARROW_EXPORT
|
||||
std::vector<FieldRef> FieldsInExpression(const Expression&);
|
||||
|
||||
/// Check if the expression references any fields.
|
||||
ARROW_EXPORT
|
||||
bool ExpressionHasFieldRefs(const Expression&);
|
||||
|
||||
struct ARROW_EXPORT KnownFieldValues;
|
||||
|
||||
/// Assemble a mapping from field references to known values. This derives known values
|
||||
/// from "equal" and "is_null" Expressions referencing a field and a literal.
|
||||
ARROW_EXPORT
|
||||
Result<KnownFieldValues> ExtractKnownFieldValues(
|
||||
const Expression& guaranteed_true_predicate);
|
||||
|
||||
/// @}
|
||||
|
||||
/// \defgroup expression-passes Functions for modification of Expressions
|
||||
///
|
||||
/// @{
|
||||
///
|
||||
/// These transform bound expressions. Some transforms utilize a guarantee, which is
|
||||
/// provided as an Expression which is guaranteed to evaluate to true. The
|
||||
/// guaranteed_true_predicate need not be bound, but canonicalization is currently
|
||||
/// deferred to producers of guarantees. For example in order to be recognized as a
|
||||
/// guarantee on a field value, an Expression must be a call to "equal" with field_ref LHS
|
||||
/// and literal RHS. Flipping the arguments, "is_in" with a one-long value_set, ... or
|
||||
/// other semantically identical Expressions will not be recognized.
|
||||
|
||||
/// Weak canonicalization which establishes guarantees for subsequent passes. Even
|
||||
/// equivalent Expressions may result in different canonicalized expressions.
|
||||
/// TODO this could be a strong canonicalization
|
||||
ARROW_EXPORT
|
||||
Result<Expression> Canonicalize(Expression, ExecContext* = NULLPTR);
|
||||
|
||||
/// Simplify Expressions based on literal arguments (for example, add(null, x) will always
|
||||
/// be null so replace the call with a null literal). Includes early evaluation of all
|
||||
/// calls whose arguments are entirely literal.
|
||||
ARROW_EXPORT
|
||||
Result<Expression> FoldConstants(Expression);
|
||||
|
||||
/// Simplify Expressions by replacing with known values of the fields which it references.
|
||||
ARROW_EXPORT
|
||||
Result<Expression> ReplaceFieldsWithKnownValues(const KnownFieldValues& known_values,
|
||||
Expression);
|
||||
|
||||
/// Simplify an expression by replacing subexpressions based on a guarantee:
|
||||
/// a boolean expression which is guaranteed to evaluate to `true`. For example, this is
|
||||
/// used to remove redundant function calls from a filter expression or to replace a
|
||||
/// reference to a constant-value field with a literal.
|
||||
ARROW_EXPORT
|
||||
Result<Expression> SimplifyWithGuarantee(Expression,
|
||||
const Expression& guaranteed_true_predicate);
|
||||
|
||||
/// Replace all named field refs (e.g. "x" or "x.y") with field paths (e.g. [0] or [1,3])
|
||||
///
|
||||
/// This isn't usually needed and does not offer any simplification by itself. However,
|
||||
/// it can be useful to normalize an expression to paths to make it simpler to work with.
|
||||
ARROW_EXPORT Result<Expression> RemoveNamedRefs(Expression expression);
|
||||
|
||||
/// @}
|
||||
|
||||
// Execution
|
||||
|
||||
/// Create an ExecBatch suitable for passing to ExecuteScalarExpression() from a
|
||||
/// RecordBatch which may have missing or incorrectly ordered columns.
|
||||
/// Missing fields will be replaced with null scalars.
|
||||
ARROW_EXPORT Result<ExecBatch> MakeExecBatch(const Schema& full_schema,
|
||||
const Datum& partial,
|
||||
Expression guarantee = literal(true));
|
||||
|
||||
/// Execute a scalar expression against the provided state and input ExecBatch. This
|
||||
/// expression must be bound.
|
||||
ARROW_EXPORT
|
||||
Result<Datum> ExecuteScalarExpression(const Expression&, const ExecBatch& input,
|
||||
ExecContext* = NULLPTR);
|
||||
|
||||
/// Convenience function for invoking against a RecordBatch
|
||||
ARROW_EXPORT
|
||||
Result<Datum> ExecuteScalarExpression(const Expression&, const Schema& full_schema,
|
||||
const Datum& partial_input, ExecContext* = NULLPTR);
|
||||
|
||||
// Serialization
|
||||
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Buffer>> Serialize(const Expression&);
|
||||
|
||||
ARROW_EXPORT
|
||||
Result<Expression> Deserialize(std::shared_ptr<Buffer>);
|
||||
|
||||
/// \defgroup expression-convenience Functions convenient expression creation
|
||||
///
|
||||
/// @{
|
||||
|
||||
ARROW_EXPORT Expression project(std::vector<Expression> values,
|
||||
std::vector<std::string> names);
|
||||
|
||||
ARROW_EXPORT Expression equal(Expression lhs, Expression rhs);
|
||||
|
||||
ARROW_EXPORT Expression not_equal(Expression lhs, Expression rhs);
|
||||
|
||||
ARROW_EXPORT Expression less(Expression lhs, Expression rhs);
|
||||
|
||||
ARROW_EXPORT Expression less_equal(Expression lhs, Expression rhs);
|
||||
|
||||
ARROW_EXPORT Expression greater(Expression lhs, Expression rhs);
|
||||
|
||||
ARROW_EXPORT Expression greater_equal(Expression lhs, Expression rhs);
|
||||
|
||||
ARROW_EXPORT Expression is_null(Expression lhs, bool nan_is_null = false);
|
||||
|
||||
ARROW_EXPORT Expression is_valid(Expression lhs);
|
||||
|
||||
ARROW_EXPORT Expression and_(Expression lhs, Expression rhs);
|
||||
ARROW_EXPORT Expression and_(const std::vector<Expression>&);
|
||||
ARROW_EXPORT Expression or_(Expression lhs, Expression rhs);
|
||||
ARROW_EXPORT Expression or_(const std::vector<Expression>&);
|
||||
ARROW_EXPORT Expression not_(Expression operand);
|
||||
|
||||
/// @}
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,75 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/compute/exec/accumulation_queue.h"
|
||||
#include "arrow/compute/exec/bloom_filter.h"
|
||||
#include "arrow/compute/exec/options.h"
|
||||
#include "arrow/compute/exec/query_context.h"
|
||||
#include "arrow/compute/exec/schema_util.h"
|
||||
#include "arrow/compute/exec/task_util.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/type.h"
|
||||
#include "arrow/util/tracing.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace compute {
|
||||
|
||||
using arrow::util::AccumulationQueue;
|
||||
|
||||
class HashJoinImpl {
|
||||
public:
|
||||
using OutputBatchCallback = std::function<void(int64_t, ExecBatch)>;
|
||||
using BuildFinishedCallback = std::function<Status(size_t)>;
|
||||
using FinishedCallback = std::function<void(int64_t)>;
|
||||
using RegisterTaskGroupCallback = std::function<int(
|
||||
std::function<Status(size_t, int64_t)>, std::function<Status(size_t)>)>;
|
||||
using StartTaskGroupCallback = std::function<Status(int, int64_t)>;
|
||||
using AbortContinuationImpl = std::function<void()>;
|
||||
|
||||
virtual ~HashJoinImpl() = default;
|
||||
virtual Status Init(QueryContext* ctx, JoinType join_type, size_t num_threads,
|
||||
const HashJoinProjectionMaps* proj_map_left,
|
||||
const HashJoinProjectionMaps* proj_map_right,
|
||||
std::vector<JoinKeyCmp> key_cmp, Expression filter,
|
||||
RegisterTaskGroupCallback register_task_group_callback,
|
||||
StartTaskGroupCallback start_task_group_callback,
|
||||
OutputBatchCallback output_batch_callback,
|
||||
FinishedCallback finished_callback) = 0;
|
||||
|
||||
virtual Status BuildHashTable(size_t thread_index, AccumulationQueue batches,
|
||||
BuildFinishedCallback on_finished) = 0;
|
||||
virtual Status ProbeSingleBatch(size_t thread_index, ExecBatch batch) = 0;
|
||||
virtual Status ProbingFinished(size_t thread_index) = 0;
|
||||
virtual void Abort(TaskScheduler::AbortContinuationImpl pos_abort_callback) = 0;
|
||||
virtual std::string ToString() const = 0;
|
||||
|
||||
static Result<std::unique_ptr<HashJoinImpl>> MakeBasic();
|
||||
static Result<std::unique_ptr<HashJoinImpl>> MakeSwiss();
|
||||
|
||||
protected:
|
||||
util::tracing::Span span_;
|
||||
};
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,315 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
|
||||
#include "arrow/compute/exec.h"
|
||||
#include "arrow/compute/exec/schema_util.h"
|
||||
#include "arrow/compute/kernels/row_encoder.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/type.h"
|
||||
|
||||
// This file contains hash join logic related to handling of dictionary encoded key
|
||||
// columns.
|
||||
//
|
||||
// A key column from probe side of the join can be matched against a key column from build
|
||||
// side of the join, as long as the underlying value types are equal. That means that:
|
||||
// - both scalars and arrays can be used and even mixed in the same column
|
||||
// - dictionary column can be matched against non-dictionary column if underlying value
|
||||
// types are equal
|
||||
// - dictionary column can be matched against dictionary column with a different index
|
||||
// type, and potentially using a different dictionary, if underlying value types are equal
|
||||
//
|
||||
// We currently require in hash join that for all dictionary encoded columns, the same
|
||||
// dictionary is used in all input exec batches.
|
||||
//
|
||||
// In order to allow matching columns with different dictionaries, different dictionary
|
||||
// index types, and dictionary key against non-dictionary key, internally comparisons will
|
||||
// be evaluated after remapping values on both sides of the join to a common
|
||||
// representation (which will be called "unified representation"). This common
|
||||
// representation is a column of int32() type (not a dictionary column). It represents an
|
||||
// index in the unified dictionary computed for the (only) dictionary present on build
|
||||
// side (an empty dictionary is still created for an empty build side). Null value is
|
||||
// always represented in this common representation as null int32 value, unified
|
||||
// dictionary will never contain a null value (so there is no ambiguity of representing
|
||||
// nulls as either index to a null entry in the dictionary or null index).
|
||||
//
|
||||
// Unified dictionary represents values present on build side. There may be values on
|
||||
// probe side that are not present in it. All such values, that are not null, are mapped
|
||||
// in the common representation to a special constant kMissingValueId.
|
||||
//
|
||||
|
||||
namespace arrow {
|
||||
namespace compute {
|
||||
|
||||
using internal::RowEncoder;
|
||||
|
||||
/// Helper class with operations that are stateless and common to processing of dictionary
|
||||
/// keys on both build and probe side.
|
||||
class HashJoinDictUtil {
|
||||
public:
|
||||
// Null values in unified representation are always represented as null that has
|
||||
// corresponding integer set to this constant
|
||||
static constexpr int32_t kNullId = 0;
|
||||
// Constant representing a value, that is not null, missing on the build side, in
|
||||
// unified representation.
|
||||
static constexpr int32_t kMissingValueId = -1;
|
||||
|
||||
// Check if data types of corresponding pair of key column on build and probe side are
|
||||
// compatible
|
||||
static bool KeyDataTypesValid(const std::shared_ptr<DataType>& probe_data_type,
|
||||
const std::shared_ptr<DataType>& build_data_type);
|
||||
|
||||
// Input must be dictionary array or dictionary scalar.
|
||||
// A precomputed and provided here lookup table in the form of int32() array will be
|
||||
// used to remap input indices to unified representation.
|
||||
//
|
||||
static Result<std::shared_ptr<ArrayData>> IndexRemapUsingLUT(
|
||||
ExecContext* ctx, const Datum& indices, int64_t batch_length,
|
||||
const std::shared_ptr<ArrayData>& map_array,
|
||||
const std::shared_ptr<DataType>& data_type);
|
||||
|
||||
// Return int32() array that contains indices of input dictionary array or scalar after
|
||||
// type casting.
|
||||
static Result<std::shared_ptr<ArrayData>> ConvertToInt32(
|
||||
const std::shared_ptr<DataType>& from_type, const Datum& input,
|
||||
int64_t batch_length, ExecContext* ctx);
|
||||
|
||||
// Return an array that contains elements of input int32() array after casting to a
|
||||
// given integer type. This is used for mapping unified representation stored in the
|
||||
// hash table on build side back to original input data type of hash join, when
|
||||
// outputting hash join results to parent exec node.
|
||||
//
|
||||
static Result<std::shared_ptr<ArrayData>> ConvertFromInt32(
|
||||
const std::shared_ptr<DataType>& to_type, const Datum& input, int64_t batch_length,
|
||||
ExecContext* ctx);
|
||||
|
||||
// Return dictionary referenced in either dictionary array or dictionary scalar
|
||||
static std::shared_ptr<Array> ExtractDictionary(const Datum& data);
|
||||
};
|
||||
|
||||
/// Implements processing of dictionary arrays/scalars in key columns on the build side of
|
||||
/// a hash join.
|
||||
/// Each instance of this class corresponds to a single column and stores and
|
||||
/// processes only the information related to that column.
|
||||
/// Const methods are thread-safe, non-const methods are not (the caller must make sure
|
||||
/// that only one thread at any time will access them).
|
||||
///
|
||||
class HashJoinDictBuild {
|
||||
public:
|
||||
// Returns true if the key column (described in input by its data type) requires any
|
||||
// pre- or post-processing related to handling dictionaries.
|
||||
//
|
||||
static bool KeyNeedsProcessing(const std::shared_ptr<DataType>& build_data_type) {
|
||||
return (build_data_type->id() == Type::DICTIONARY);
|
||||
}
|
||||
|
||||
// Data type of unified representation
|
||||
static std::shared_ptr<DataType> DataTypeAfterRemapping() { return int32(); }
|
||||
|
||||
// Should be called only once in hash join, before processing any build or probe
|
||||
// batches.
|
||||
//
|
||||
// Takes a pointer to the dictionary for a corresponding key column on the build side as
|
||||
// an input. If the build side is empty, it still needs to be called, but with
|
||||
// dictionary pointer set to null.
|
||||
//
|
||||
// Currently it is required that all input batches on build side share the same
|
||||
// dictionary. For each input batch during its pre-processing, dictionary will be
|
||||
// checked and error will be returned if it is different then the one provided in the
|
||||
// call to this method.
|
||||
//
|
||||
// Unifies the dictionary. The order of the values is still preserved.
|
||||
// Null and duplicate entries are removed. If the dictionary is already unified, its
|
||||
// copy will be produced and stored within this class.
|
||||
//
|
||||
// Prepares the mapping from ids within original dictionary to the ids in the resulting
|
||||
// dictionary. This is used later on to pre-process (map to unified representation) key
|
||||
// column on build side.
|
||||
//
|
||||
// Prepares the reverse mapping (in the form of hash table) from values to the ids in
|
||||
// the resulting dictionary. This will be used later on to pre-process (map to unified
|
||||
// representation) key column on probe side. Values on probe side that are not present
|
||||
// in the original dictionary will be mapped to a special constant kMissingValueId. The
|
||||
// exception is made for nulls, which get always mapped to nulls (both when null is
|
||||
// represented as a dictionary id pointing to a null and a null dictionary id).
|
||||
//
|
||||
Status Init(ExecContext* ctx, std::shared_ptr<Array> dictionary,
|
||||
std::shared_ptr<DataType> index_type, std::shared_ptr<DataType> value_type);
|
||||
|
||||
// Remap array or scalar values into unified representation (array of int32()).
|
||||
// Outputs kMissingValueId if input value is not found in the unified dictionary.
|
||||
// Outputs null for null input value (with corresponding data set to kNullId).
|
||||
//
|
||||
Result<std::shared_ptr<ArrayData>> RemapInputValues(ExecContext* ctx,
|
||||
const Datum& values,
|
||||
int64_t batch_length) const;
|
||||
|
||||
// Remap dictionary array or dictionary scalar on build side to unified representation.
|
||||
// Dictionary referenced in the input must match the dictionary that was
|
||||
// given during initialization.
|
||||
// The output is a dictionary array that references unified dictionary.
|
||||
//
|
||||
Result<std::shared_ptr<ArrayData>> RemapInput(
|
||||
ExecContext* ctx, const Datum& indices, int64_t batch_length,
|
||||
const std::shared_ptr<DataType>& data_type) const;
|
||||
|
||||
// Outputs dictionary array referencing unified dictionary, given an array with 32-bit
|
||||
// ids.
|
||||
// Used to post-process values looked up in a hash table on build side of the hash join
|
||||
// before outputting to the parent exec node.
|
||||
//
|
||||
Result<std::shared_ptr<ArrayData>> RemapOutput(const ArrayData& indices32Bit,
|
||||
ExecContext* ctx) const;
|
||||
|
||||
// Release shared pointers and memory
|
||||
void CleanUp();
|
||||
|
||||
private:
|
||||
// Data type of dictionary ids for the input dictionary on build side
|
||||
std::shared_ptr<DataType> index_type_;
|
||||
// Data type of values for the input dictionary on build side
|
||||
std::shared_ptr<DataType> value_type_;
|
||||
// Mapping from (encoded as string) values to the ids in unified dictionary
|
||||
std::unordered_map<std::string, int32_t> hash_table_;
|
||||
// Mapping from input dictionary ids to unified dictionary ids
|
||||
std::shared_ptr<ArrayData> remapped_ids_;
|
||||
// Input dictionary
|
||||
std::shared_ptr<Array> dictionary_;
|
||||
// Unified dictionary
|
||||
std::shared_ptr<ArrayData> unified_dictionary_;
|
||||
};
|
||||
|
||||
/// Implements processing of dictionary arrays/scalars in key columns on the probe side of
|
||||
/// a hash join.
|
||||
/// Each instance of this class corresponds to a single column and stores and
|
||||
/// processes only the information related to that column.
|
||||
/// It is not thread-safe - every participating thread should use its own instance of
|
||||
/// this class.
|
||||
///
|
||||
class HashJoinDictProbe {
|
||||
public:
|
||||
static bool KeyNeedsProcessing(const std::shared_ptr<DataType>& probe_data_type,
|
||||
const std::shared_ptr<DataType>& build_data_type);
|
||||
|
||||
// Data type of the result of remapping input key column.
|
||||
//
|
||||
// The result of remapping is what is used in hash join for matching keys on build and
|
||||
// probe side. The exact data types may be different, as described below, and therefore
|
||||
// a common representation is needed for simplifying comparisons of pairs of keys on
|
||||
// both sides.
|
||||
//
|
||||
// We support matching key that is of non-dictionary type with key that is of dictionary
|
||||
// type, as long as the underlying value types are equal. We support matching when both
|
||||
// keys are of dictionary type, regardless whether underlying dictionary index types are
|
||||
// the same or not.
|
||||
//
|
||||
static std::shared_ptr<DataType> DataTypeAfterRemapping(
|
||||
const std::shared_ptr<DataType>& build_data_type);
|
||||
|
||||
// Should only be called if KeyNeedsProcessing method returns true for a pair of
|
||||
// corresponding key columns from build and probe side.
|
||||
// Converts values in order to match the common representation for
|
||||
// both build and probe side used in hash table comparison.
|
||||
// Supports arrays and scalars as input.
|
||||
// Argument opt_build_side should be null if dictionary key on probe side is matched
|
||||
// with non-dictionary key on build side.
|
||||
//
|
||||
Result<std::shared_ptr<ArrayData>> RemapInput(
|
||||
const HashJoinDictBuild* opt_build_side, const Datum& data, int64_t batch_length,
|
||||
const std::shared_ptr<DataType>& probe_data_type,
|
||||
const std::shared_ptr<DataType>& build_data_type, ExecContext* ctx);
|
||||
|
||||
void CleanUp();
|
||||
|
||||
private:
|
||||
// May be null if probe side key is non-dictionary. Otherwise it is used to verify that
|
||||
// only a single dictionary is referenced in exec batch on probe side of hash join.
|
||||
std::shared_ptr<Array> dictionary_;
|
||||
// Mapping from dictionary on probe side of hash join (if it is used) to unified
|
||||
// representation.
|
||||
std::shared_ptr<ArrayData> remapped_ids_;
|
||||
// Encoder of key columns that uses unified representation instead of original data type
|
||||
// for key columns that need to use it (have dictionaries on either side of the join).
|
||||
internal::RowEncoder encoder_;
|
||||
};
|
||||
|
||||
// Encapsulates dictionary handling logic for build side of hash join.
|
||||
//
|
||||
class HashJoinDictBuildMulti {
|
||||
public:
|
||||
Status Init(const SchemaProjectionMaps<HashJoinProjection>& proj_map,
|
||||
const ExecBatch* opt_non_empty_batch, ExecContext* ctx);
|
||||
static void InitEncoder(const SchemaProjectionMaps<HashJoinProjection>& proj_map,
|
||||
RowEncoder* encoder, ExecContext* ctx);
|
||||
Status EncodeBatch(size_t thread_index,
|
||||
const SchemaProjectionMaps<HashJoinProjection>& proj_map,
|
||||
const ExecBatch& batch, RowEncoder* encoder, ExecContext* ctx) const;
|
||||
Status PostDecode(const SchemaProjectionMaps<HashJoinProjection>& proj_map,
|
||||
ExecBatch* decoded_key_batch, ExecContext* ctx);
|
||||
const HashJoinDictBuild& get_dict_build(int icol) const { return remap_imp_[icol]; }
|
||||
|
||||
private:
|
||||
std::vector<bool> needs_remap_;
|
||||
std::vector<HashJoinDictBuild> remap_imp_;
|
||||
};
|
||||
|
||||
// Encapsulates dictionary handling logic for probe side of hash join
|
||||
//
|
||||
class HashJoinDictProbeMulti {
|
||||
public:
|
||||
void Init(size_t num_threads);
|
||||
bool BatchRemapNeeded(size_t thread_index,
|
||||
const SchemaProjectionMaps<HashJoinProjection>& proj_map_probe,
|
||||
const SchemaProjectionMaps<HashJoinProjection>& proj_map_build,
|
||||
ExecContext* ctx);
|
||||
Status EncodeBatch(size_t thread_index,
|
||||
const SchemaProjectionMaps<HashJoinProjection>& proj_map_probe,
|
||||
const SchemaProjectionMaps<HashJoinProjection>& proj_map_build,
|
||||
const HashJoinDictBuildMulti& dict_build, const ExecBatch& batch,
|
||||
RowEncoder** out_encoder, ExecBatch* opt_out_key_batch,
|
||||
ExecContext* ctx);
|
||||
|
||||
private:
|
||||
void InitLocalStateIfNeeded(
|
||||
size_t thread_index, const SchemaProjectionMaps<HashJoinProjection>& proj_map_probe,
|
||||
const SchemaProjectionMaps<HashJoinProjection>& proj_map_build, ExecContext* ctx);
|
||||
static void InitEncoder(const SchemaProjectionMaps<HashJoinProjection>& proj_map_probe,
|
||||
const SchemaProjectionMaps<HashJoinProjection>& proj_map_build,
|
||||
RowEncoder* encoder, ExecContext* ctx);
|
||||
struct ThreadLocalState {
|
||||
bool is_initialized;
|
||||
// Whether any key column needs remapping (because of dictionaries used) before doing
|
||||
// join hash table lookups
|
||||
bool any_needs_remap;
|
||||
// Whether each key column needs remapping before doing join hash table lookups
|
||||
std::vector<bool> needs_remap;
|
||||
std::vector<HashJoinDictProbe> remap_imp;
|
||||
// Encoder of key columns that uses unified representation instead of original data
|
||||
// type for key columns that need to use it (have dictionaries on either side of the
|
||||
// join).
|
||||
RowEncoder post_remap_encoder;
|
||||
};
|
||||
std::vector<ThreadLocalState> local_states_;
|
||||
};
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,99 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/compute/exec/options.h"
|
||||
#include "arrow/compute/exec/schema_util.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/status.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace compute {
|
||||
|
||||
class ARROW_EXPORT HashJoinSchema {
|
||||
public:
|
||||
Status Init(JoinType join_type, const Schema& left_schema,
|
||||
const std::vector<FieldRef>& left_keys, const Schema& right_schema,
|
||||
const std::vector<FieldRef>& right_keys, const Expression& filter,
|
||||
const std::string& left_field_name_prefix,
|
||||
const std::string& right_field_name_prefix);
|
||||
|
||||
Status Init(JoinType join_type, const Schema& left_schema,
|
||||
const std::vector<FieldRef>& left_keys,
|
||||
const std::vector<FieldRef>& left_output, const Schema& right_schema,
|
||||
const std::vector<FieldRef>& right_keys,
|
||||
const std::vector<FieldRef>& right_output, const Expression& filter,
|
||||
const std::string& left_field_name_prefix,
|
||||
const std::string& right_field_name_prefix);
|
||||
|
||||
static Status ValidateSchemas(JoinType join_type, const Schema& left_schema,
|
||||
const std::vector<FieldRef>& left_keys,
|
||||
const std::vector<FieldRef>& left_output,
|
||||
const Schema& right_schema,
|
||||
const std::vector<FieldRef>& right_keys,
|
||||
const std::vector<FieldRef>& right_output,
|
||||
const std::string& left_field_name_prefix,
|
||||
const std::string& right_field_name_prefix);
|
||||
|
||||
bool HasDictionaries() const;
|
||||
|
||||
bool HasLargeBinary() const;
|
||||
|
||||
Result<Expression> BindFilter(Expression filter, const Schema& left_schema,
|
||||
const Schema& right_schema, ExecContext* exec_context);
|
||||
std::shared_ptr<Schema> MakeOutputSchema(const std::string& left_field_name_suffix,
|
||||
const std::string& right_field_name_suffix);
|
||||
|
||||
bool LeftPayloadIsEmpty() { return PayloadIsEmpty(0); }
|
||||
|
||||
bool RightPayloadIsEmpty() { return PayloadIsEmpty(1); }
|
||||
|
||||
static int kMissingField() {
|
||||
return SchemaProjectionMaps<HashJoinProjection>::kMissingField;
|
||||
}
|
||||
|
||||
SchemaProjectionMaps<HashJoinProjection> proj_maps[2];
|
||||
|
||||
private:
|
||||
static bool IsTypeSupported(const DataType& type);
|
||||
|
||||
Status CollectFilterColumns(std::vector<FieldRef>& left_filter,
|
||||
std::vector<FieldRef>& right_filter,
|
||||
const Expression& filter, const Schema& left_schema,
|
||||
const Schema& right_schema);
|
||||
|
||||
Expression RewriteFilterToUseFilterSchema(int right_filter_offset,
|
||||
const SchemaProjectionMap& left_to_filter,
|
||||
const SchemaProjectionMap& right_to_filter,
|
||||
const Expression& filter);
|
||||
|
||||
bool PayloadIsEmpty(int side) {
|
||||
ARROW_DCHECK(side == 0 || side == 1);
|
||||
return proj_maps[side].num_cols(HashJoinProjection::PAYLOAD) == 0;
|
||||
}
|
||||
|
||||
static Result<std::vector<FieldRef>> ComputePayload(const Schema& schema,
|
||||
const std::vector<FieldRef>& output,
|
||||
const std::vector<FieldRef>& filter,
|
||||
const std::vector<FieldRef>& key);
|
||||
};
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,223 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#if defined(ARROW_HAVE_AVX2)
|
||||
#include <immintrin.h>
|
||||
#endif
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#include "arrow/compute/exec/util.h"
|
||||
#include "arrow/compute/light_array.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace compute {
|
||||
|
||||
// Forward declarations only needed for making test functions a friend of the classes in
|
||||
// this file.
|
||||
//
|
||||
enum class BloomFilterBuildStrategy;
|
||||
|
||||
// Implementations are based on xxh3 32-bit algorithm description from:
|
||||
// https://github.com/Cyan4973/xxHash/blob/dev/doc/xxhash_spec.md
|
||||
//
|
||||
class ARROW_EXPORT Hashing32 {
|
||||
friend class TestVectorHash;
|
||||
template <typename T>
|
||||
friend void TestBloomLargeHashHelper(int64_t, int64_t, const std::vector<uint64_t>&,
|
||||
int64_t, int, T*);
|
||||
friend void TestBloomSmall(BloomFilterBuildStrategy, int64_t, int, bool, bool);
|
||||
|
||||
public:
|
||||
static void HashMultiColumn(const std::vector<KeyColumnArray>& cols, LightContext* ctx,
|
||||
uint32_t* out_hash);
|
||||
|
||||
static Status HashBatch(const ExecBatch& key_batch, uint32_t* hashes,
|
||||
std::vector<KeyColumnArray>& column_arrays,
|
||||
int64_t hardware_flags, util::TempVectorStack* temp_stack,
|
||||
int64_t offset, int64_t length);
|
||||
|
||||
private:
|
||||
static const uint32_t PRIME32_1 = 0x9E3779B1;
|
||||
static const uint32_t PRIME32_2 = 0x85EBCA77;
|
||||
static const uint32_t PRIME32_3 = 0xC2B2AE3D;
|
||||
static const uint32_t PRIME32_4 = 0x27D4EB2F;
|
||||
static const uint32_t PRIME32_5 = 0x165667B1;
|
||||
static const uint32_t kCombineConst = 0x9e3779b9UL;
|
||||
static const int64_t kStripeSize = 4 * sizeof(uint32_t);
|
||||
|
||||
static void HashFixed(int64_t hardware_flags, bool combine_hashes, uint32_t num_keys,
|
||||
uint64_t length_key, const uint8_t* keys, uint32_t* hashes,
|
||||
uint32_t* temp_hashes_for_combine);
|
||||
|
||||
static void HashVarLen(int64_t hardware_flags, bool combine_hashes, uint32_t num_rows,
|
||||
const uint32_t* offsets, const uint8_t* concatenated_keys,
|
||||
uint32_t* hashes, uint32_t* temp_hashes_for_combine);
|
||||
|
||||
static void HashVarLen(int64_t hardware_flags, bool combine_hashes, uint32_t num_rows,
|
||||
const uint64_t* offsets, const uint8_t* concatenated_keys,
|
||||
uint32_t* hashes, uint32_t* temp_hashes_for_combine);
|
||||
|
||||
static inline uint32_t Avalanche(uint32_t acc) {
|
||||
acc ^= (acc >> 15);
|
||||
acc *= PRIME32_2;
|
||||
acc ^= (acc >> 13);
|
||||
acc *= PRIME32_3;
|
||||
acc ^= (acc >> 16);
|
||||
return acc;
|
||||
}
|
||||
static inline uint32_t Round(uint32_t acc, uint32_t input);
|
||||
static inline uint32_t CombineAccumulators(uint32_t acc1, uint32_t acc2, uint32_t acc3,
|
||||
uint32_t acc4);
|
||||
static inline uint32_t CombineHashesImp(uint32_t previous_hash, uint32_t hash) {
|
||||
uint32_t next_hash = previous_hash ^ (hash + kCombineConst + (previous_hash << 6) +
|
||||
(previous_hash >> 2));
|
||||
return next_hash;
|
||||
}
|
||||
static inline void ProcessFullStripes(uint64_t num_stripes, const uint8_t* key,
|
||||
uint32_t* out_acc1, uint32_t* out_acc2,
|
||||
uint32_t* out_acc3, uint32_t* out_acc4);
|
||||
static inline void ProcessLastStripe(uint32_t mask1, uint32_t mask2, uint32_t mask3,
|
||||
uint32_t mask4, const uint8_t* last_stripe,
|
||||
uint32_t* acc1, uint32_t* acc2, uint32_t* acc3,
|
||||
uint32_t* acc4);
|
||||
static inline void StripeMask(int i, uint32_t* mask1, uint32_t* mask2, uint32_t* mask3,
|
||||
uint32_t* mask4);
|
||||
template <bool T_COMBINE_HASHES>
|
||||
static void HashFixedLenImp(uint32_t num_rows, uint64_t length, const uint8_t* keys,
|
||||
uint32_t* hashes);
|
||||
template <typename T, bool T_COMBINE_HASHES>
|
||||
static void HashVarLenImp(uint32_t num_rows, const T* offsets,
|
||||
const uint8_t* concatenated_keys, uint32_t* hashes);
|
||||
template <bool T_COMBINE_HASHES>
|
||||
static void HashBitImp(int64_t bit_offset, uint32_t num_keys, const uint8_t* keys,
|
||||
uint32_t* hashes);
|
||||
static void HashBit(bool combine_hashes, int64_t bit_offset, uint32_t num_keys,
|
||||
const uint8_t* keys, uint32_t* hashes);
|
||||
template <bool T_COMBINE_HASHES, typename T>
|
||||
static void HashIntImp(uint32_t num_keys, const T* keys, uint32_t* hashes);
|
||||
static void HashInt(bool combine_hashes, uint32_t num_keys, uint64_t length_key,
|
||||
const uint8_t* keys, uint32_t* hashes);
|
||||
|
||||
#if defined(ARROW_HAVE_AVX2)
|
||||
static inline __m256i Avalanche_avx2(__m256i hash);
|
||||
static inline __m256i CombineHashesImp_avx2(__m256i previous_hash, __m256i hash);
|
||||
template <bool T_COMBINE_HASHES>
|
||||
static void AvalancheAll_avx2(uint32_t num_rows, uint32_t* hashes,
|
||||
const uint32_t* hashes_temp_for_combine);
|
||||
static inline __m256i Round_avx2(__m256i acc, __m256i input);
|
||||
static inline uint64_t CombineAccumulators_avx2(__m256i acc);
|
||||
static inline __m256i StripeMask_avx2(int i, int j);
|
||||
template <bool two_equal_lengths>
|
||||
static inline __m256i ProcessStripes_avx2(int64_t num_stripes_A, int64_t num_stripes_B,
|
||||
__m256i mask_last_stripe, const uint8_t* keys,
|
||||
int64_t offset_A, int64_t offset_B);
|
||||
template <bool T_COMBINE_HASHES>
|
||||
static uint32_t HashFixedLenImp_avx2(uint32_t num_rows, uint64_t length,
|
||||
const uint8_t* keys, uint32_t* hashes,
|
||||
uint32_t* hashes_temp_for_combine);
|
||||
static uint32_t HashFixedLen_avx2(bool combine_hashes, uint32_t num_rows,
|
||||
uint64_t length, const uint8_t* keys,
|
||||
uint32_t* hashes, uint32_t* hashes_temp_for_combine);
|
||||
template <typename T, bool T_COMBINE_HASHES>
|
||||
static uint32_t HashVarLenImp_avx2(uint32_t num_rows, const T* offsets,
|
||||
const uint8_t* concatenated_keys, uint32_t* hashes,
|
||||
uint32_t* hashes_temp_for_combine);
|
||||
static uint32_t HashVarLen_avx2(bool combine_hashes, uint32_t num_rows,
|
||||
const uint32_t* offsets,
|
||||
const uint8_t* concatenated_keys, uint32_t* hashes,
|
||||
uint32_t* hashes_temp_for_combine);
|
||||
static uint32_t HashVarLen_avx2(bool combine_hashes, uint32_t num_rows,
|
||||
const uint64_t* offsets,
|
||||
const uint8_t* concatenated_keys, uint32_t* hashes,
|
||||
uint32_t* hashes_temp_for_combine);
|
||||
#endif
|
||||
};
|
||||
|
||||
class ARROW_EXPORT Hashing64 {
|
||||
friend class TestVectorHash;
|
||||
template <typename T>
|
||||
friend void TestBloomLargeHashHelper(int64_t, int64_t, const std::vector<uint64_t>&,
|
||||
int64_t, int, T*);
|
||||
friend void TestBloomSmall(BloomFilterBuildStrategy, int64_t, int, bool, bool);
|
||||
|
||||
public:
|
||||
static void HashMultiColumn(const std::vector<KeyColumnArray>& cols, LightContext* ctx,
|
||||
uint64_t* hashes);
|
||||
|
||||
static Status HashBatch(const ExecBatch& key_batch, uint64_t* hashes,
|
||||
std::vector<KeyColumnArray>& column_arrays,
|
||||
int64_t hardware_flags, util::TempVectorStack* temp_stack,
|
||||
int64_t offset, int64_t length);
|
||||
|
||||
private:
|
||||
static const uint64_t PRIME64_1 = 0x9E3779B185EBCA87ULL;
|
||||
static const uint64_t PRIME64_2 = 0xC2B2AE3D27D4EB4FULL;
|
||||
static const uint64_t PRIME64_3 = 0x165667B19E3779F9ULL;
|
||||
static const uint64_t PRIME64_4 = 0x85EBCA77C2B2AE63ULL;
|
||||
static const uint64_t PRIME64_5 = 0x27D4EB2F165667C5ULL;
|
||||
static const uint32_t kCombineConst = 0x9e3779b9UL;
|
||||
static const int64_t kStripeSize = 4 * sizeof(uint64_t);
|
||||
|
||||
static void HashFixed(bool combine_hashes, uint32_t num_keys, uint64_t length_key,
|
||||
const uint8_t* keys, uint64_t* hashes);
|
||||
|
||||
static void HashVarLen(bool combine_hashes, uint32_t num_rows, const uint32_t* offsets,
|
||||
const uint8_t* concatenated_keys, uint64_t* hashes);
|
||||
|
||||
static void HashVarLen(bool combine_hashes, uint32_t num_rows, const uint64_t* offsets,
|
||||
const uint8_t* concatenated_keys, uint64_t* hashes);
|
||||
|
||||
static inline uint64_t Avalanche(uint64_t acc);
|
||||
static inline uint64_t Round(uint64_t acc, uint64_t input);
|
||||
static inline uint64_t CombineAccumulators(uint64_t acc1, uint64_t acc2, uint64_t acc3,
|
||||
uint64_t acc4);
|
||||
static inline uint64_t CombineHashesImp(uint64_t previous_hash, uint64_t hash) {
|
||||
uint64_t next_hash = previous_hash ^ (hash + kCombineConst + (previous_hash << 6) +
|
||||
(previous_hash >> 2));
|
||||
return next_hash;
|
||||
}
|
||||
static inline void ProcessFullStripes(uint64_t num_stripes, const uint8_t* key,
|
||||
uint64_t* out_acc1, uint64_t* out_acc2,
|
||||
uint64_t* out_acc3, uint64_t* out_acc4);
|
||||
static inline void ProcessLastStripe(uint64_t mask1, uint64_t mask2, uint64_t mask3,
|
||||
uint64_t mask4, const uint8_t* last_stripe,
|
||||
uint64_t* acc1, uint64_t* acc2, uint64_t* acc3,
|
||||
uint64_t* acc4);
|
||||
static inline void StripeMask(int i, uint64_t* mask1, uint64_t* mask2, uint64_t* mask3,
|
||||
uint64_t* mask4);
|
||||
template <bool T_COMBINE_HASHES>
|
||||
static void HashFixedLenImp(uint32_t num_rows, uint64_t length, const uint8_t* keys,
|
||||
uint64_t* hashes);
|
||||
template <typename T, bool T_COMBINE_HASHES>
|
||||
static void HashVarLenImp(uint32_t num_rows, const T* offsets,
|
||||
const uint8_t* concatenated_keys, uint64_t* hashes);
|
||||
template <bool T_COMBINE_HASHES>
|
||||
static void HashBitImp(int64_t bit_offset, uint32_t num_keys, const uint8_t* keys,
|
||||
uint64_t* hashes);
|
||||
static void HashBit(bool T_COMBINE_HASHES, int64_t bit_offset, uint32_t num_keys,
|
||||
const uint8_t* keys, uint64_t* hashes);
|
||||
template <bool T_COMBINE_HASHES, typename T>
|
||||
static void HashIntImp(uint32_t num_keys, const T* keys, uint64_t* hashes);
|
||||
static void HashInt(bool T_COMBINE_HASHES, uint32_t num_keys, uint64_t length_key,
|
||||
const uint8_t* keys, uint64_t* hashes);
|
||||
};
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,275 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <functional>
|
||||
|
||||
#include "arrow/compute/exec/util.h"
|
||||
#include "arrow/memory_pool.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/status.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace compute {
|
||||
|
||||
// SwissTable is a variant of a hash table implementation.
|
||||
// This implementation is vectorized, that is: main interface methods take arrays of input
|
||||
// values and output arrays of result values.
|
||||
//
|
||||
// A detailed explanation of this data structure (including concepts such as blocks,
|
||||
// slots, stamps) and operations provided by this class is given in the document:
|
||||
// arrow/compute/exec/doc/key_map.md.
|
||||
//
|
||||
class SwissTable {
|
||||
friend class SwissTableMerge;
|
||||
|
||||
public:
|
||||
SwissTable() = default;
|
||||
~SwissTable() { cleanup(); }
|
||||
|
||||
using EqualImpl =
|
||||
std::function<void(int num_keys, const uint16_t* selection /* may be null */,
|
||||
const uint32_t* group_ids, uint32_t* out_num_keys_mismatch,
|
||||
uint16_t* out_selection_mismatch, void* callback_ctx)>;
|
||||
using AppendImpl =
|
||||
std::function<Status(int num_keys, const uint16_t* selection, void* callback_ctx)>;
|
||||
|
||||
Status init(int64_t hardware_flags, MemoryPool* pool, int log_blocks = 0,
|
||||
bool no_hash_array = false);
|
||||
|
||||
void cleanup();
|
||||
|
||||
void early_filter(const int num_keys, const uint32_t* hashes,
|
||||
uint8_t* out_match_bitvector, uint8_t* out_local_slots) const;
|
||||
|
||||
void find(const int num_keys, const uint32_t* hashes, uint8_t* inout_match_bitvector,
|
||||
const uint8_t* local_slots, uint32_t* out_group_ids,
|
||||
util::TempVectorStack* temp_stack, const EqualImpl& equal_impl,
|
||||
void* callback_ctx) const;
|
||||
|
||||
Status map_new_keys(uint32_t num_ids, uint16_t* ids, const uint32_t* hashes,
|
||||
uint32_t* group_ids, util::TempVectorStack* temp_stack,
|
||||
const EqualImpl& equal_impl, const AppendImpl& append_impl,
|
||||
void* callback_ctx);
|
||||
|
||||
int minibatch_size() const { return 1 << log_minibatch_; }
|
||||
|
||||
int64_t num_inserted() const { return num_inserted_; }
|
||||
|
||||
int64_t hardware_flags() const { return hardware_flags_; }
|
||||
|
||||
MemoryPool* pool() const { return pool_; }
|
||||
|
||||
private:
|
||||
// Lookup helpers
|
||||
|
||||
/// \brief Scan bytes in block in reverse and stop as soon
|
||||
/// as a position of interest is found.
|
||||
///
|
||||
/// Positions of interest:
|
||||
/// a) slot with a matching stamp is encountered,
|
||||
/// b) first empty slot is encountered,
|
||||
/// c) we reach the end of the block.
|
||||
///
|
||||
/// Optionally an index of the first slot to start the search from can be specified.
|
||||
/// In this case slots before it will be ignored.
|
||||
///
|
||||
/// \param[in] block 8 byte block of hash table
|
||||
/// \param[in] stamp 7 bits of hash used as a stamp
|
||||
/// \param[in] start_slot Index of the first slot in the block to start search from. We
|
||||
/// assume that this index always points to a non-empty slot, equivalently
|
||||
/// that it comes before any empty slots. (Used only by one template
|
||||
/// variant.)
|
||||
/// \param[out] out_slot index corresponding to the discovered position of interest (8
|
||||
/// represents end of block).
|
||||
/// \param[out] out_match_found an integer flag (0 or 1) indicating if we reached an
|
||||
/// empty slot (0) or not (1). Therefore 1 can mean that either actual match was found
|
||||
/// (case a) above) or we reached the end of full block (case b) above).
|
||||
///
|
||||
template <bool use_start_slot>
|
||||
inline void search_block(uint64_t block, int stamp, int start_slot, int* out_slot,
|
||||
int* out_match_found) const;
|
||||
|
||||
/// \brief Extract group id for a given slot in a given block.
|
||||
///
|
||||
inline uint64_t extract_group_id(const uint8_t* block_ptr, int slot,
|
||||
uint64_t group_id_mask) const;
|
||||
void extract_group_ids(const int num_keys, const uint16_t* optional_selection,
|
||||
const uint32_t* hashes, const uint8_t* local_slots,
|
||||
uint32_t* out_group_ids) const;
|
||||
|
||||
template <typename T, bool use_selection>
|
||||
void extract_group_ids_imp(const int num_keys, const uint16_t* selection,
|
||||
const uint32_t* hashes, const uint8_t* local_slots,
|
||||
uint32_t* out_group_ids, int elements_offset,
|
||||
int element_mutltiplier) const;
|
||||
|
||||
inline uint64_t next_slot_to_visit(uint64_t block_index, int slot,
|
||||
int match_found) const;
|
||||
|
||||
inline uint64_t num_groups_for_resize() const;
|
||||
|
||||
inline uint64_t wrap_global_slot_id(uint64_t global_slot_id) const;
|
||||
|
||||
void init_slot_ids(const int num_keys, const uint16_t* selection,
|
||||
const uint32_t* hashes, const uint8_t* local_slots,
|
||||
const uint8_t* match_bitvector, uint32_t* out_slot_ids) const;
|
||||
|
||||
void init_slot_ids_for_new_keys(uint32_t num_ids, const uint16_t* ids,
|
||||
const uint32_t* hashes, uint32_t* slot_ids) const;
|
||||
|
||||
// Quickly filter out keys that have no matches based only on hash value and the
|
||||
// corresponding starting 64-bit block of slot status bytes. May return false positives.
|
||||
//
|
||||
void early_filter_imp(const int num_keys, const uint32_t* hashes,
|
||||
uint8_t* out_match_bitvector, uint8_t* out_local_slots) const;
|
||||
#if defined(ARROW_HAVE_AVX2)
|
||||
int early_filter_imp_avx2_x8(const int num_hashes, const uint32_t* hashes,
|
||||
uint8_t* out_match_bitvector,
|
||||
uint8_t* out_local_slots) const;
|
||||
int early_filter_imp_avx2_x32(const int num_hashes, const uint32_t* hashes,
|
||||
uint8_t* out_match_bitvector,
|
||||
uint8_t* out_local_slots) const;
|
||||
int extract_group_ids_avx2(const int num_keys, const uint32_t* hashes,
|
||||
const uint8_t* local_slots, uint32_t* out_group_ids,
|
||||
int byte_offset, int byte_multiplier, int byte_size) const;
|
||||
#endif
|
||||
|
||||
void run_comparisons(const int num_keys, const uint16_t* optional_selection_ids,
|
||||
const uint8_t* optional_selection_bitvector,
|
||||
const uint32_t* groupids, int* out_num_not_equal,
|
||||
uint16_t* out_not_equal_selection, const EqualImpl& equal_impl,
|
||||
void* callback_ctx) const;
|
||||
|
||||
inline bool find_next_stamp_match(const uint32_t hash, const uint32_t in_slot_id,
|
||||
uint32_t* out_slot_id, uint32_t* out_group_id) const;
|
||||
|
||||
inline void insert_into_empty_slot(uint32_t slot_id, uint32_t hash, uint32_t group_id);
|
||||
|
||||
// Slow processing of input keys in the most generic case.
|
||||
// Handles inserting new keys.
|
||||
// Pre-existing keys will be handled correctly, although the intended use is for this
|
||||
// call to follow a call to find() method, which would only pass on new keys that were
|
||||
// not present in the hash table.
|
||||
//
|
||||
Status map_new_keys_helper(const uint32_t* hashes, uint32_t* inout_num_selected,
|
||||
uint16_t* inout_selection, bool* out_need_resize,
|
||||
uint32_t* out_group_ids, uint32_t* out_next_slot_ids,
|
||||
util::TempVectorStack* temp_stack,
|
||||
const EqualImpl& equal_impl, const AppendImpl& append_impl,
|
||||
void* callback_ctx);
|
||||
|
||||
// Resize small hash tables when 50% full (up to 8KB).
|
||||
// Resize large hash tables when 75% full.
|
||||
Status grow_double();
|
||||
|
||||
static int num_groupid_bits_from_log_blocks(int log_blocks) {
|
||||
int required_bits = log_blocks + 3;
|
||||
return required_bits <= 8 ? 8
|
||||
: required_bits <= 16 ? 16
|
||||
: required_bits <= 32 ? 32
|
||||
: 64;
|
||||
}
|
||||
|
||||
// Use 32-bit hash for now
|
||||
static constexpr int bits_hash_ = 32;
|
||||
|
||||
// Number of hash bits stored in slots in a block.
|
||||
// The highest bits of hash determine block id.
|
||||
// The next set of highest bits is a "stamp" stored in a slot in a block.
|
||||
static constexpr int bits_stamp_ = 7;
|
||||
|
||||
// Padding bytes added at the end of buffers for ease of SIMD access
|
||||
static constexpr int padding_ = 64;
|
||||
|
||||
int log_minibatch_;
|
||||
// Base 2 log of the number of blocks
|
||||
int log_blocks_ = 0;
|
||||
// Number of keys inserted into hash table
|
||||
uint32_t num_inserted_ = 0;
|
||||
|
||||
// Data for blocks.
|
||||
// Each block has 8 status bytes for 8 slots, followed by 8 bit packed group ids for
|
||||
// these slots. In 8B status word, the order of bytes is reversed. Group ids are in
|
||||
// normal order. There is 64B padding at the end.
|
||||
//
|
||||
// 0 byte - 7 bucket | 1. byte - 6 bucket | ...
|
||||
// ---------------------------------------------------
|
||||
// | Empty bit* | Empty bit |
|
||||
// ---------------------------------------------------
|
||||
// | 7-bit hash | 7-bit hash |
|
||||
// ---------------------------------------------------
|
||||
// * Empty bucket has value 0x80. Non-empty bucket has highest bit set to 0.
|
||||
//
|
||||
uint8_t* blocks_;
|
||||
|
||||
// Array of hashes of values inserted into slots.
|
||||
// Undefined if the corresponding slot is empty.
|
||||
// There is 64B padding at the end.
|
||||
uint32_t* hashes_;
|
||||
|
||||
int64_t hardware_flags_;
|
||||
MemoryPool* pool_;
|
||||
};
|
||||
|
||||
uint64_t SwissTable::extract_group_id(const uint8_t* block_ptr, int slot,
|
||||
uint64_t group_id_mask) const {
|
||||
// Group id values for all 8 slots in the block are bit-packed and follow the status
|
||||
// bytes. We assume here that the number of bits is rounded up to 8, 16, 32 or 64. In
|
||||
// that case we can extract group id using aligned 64-bit word access.
|
||||
int num_group_id_bits = static_cast<int>(ARROW_POPCOUNT64(group_id_mask));
|
||||
ARROW_DCHECK(num_group_id_bits == 8 || num_group_id_bits == 16 ||
|
||||
num_group_id_bits == 32 || num_group_id_bits == 64);
|
||||
|
||||
int bit_offset = slot * num_group_id_bits;
|
||||
const uint64_t* group_id_bytes =
|
||||
reinterpret_cast<const uint64_t*>(block_ptr) + 1 + (bit_offset >> 6);
|
||||
uint64_t group_id = (*group_id_bytes >> (bit_offset & 63)) & group_id_mask;
|
||||
|
||||
return group_id;
|
||||
}
|
||||
|
||||
void SwissTable::insert_into_empty_slot(uint32_t slot_id, uint32_t hash,
|
||||
uint32_t group_id) {
|
||||
const uint64_t num_groupid_bits = num_groupid_bits_from_log_blocks(log_blocks_);
|
||||
|
||||
// We assume here that the number of bits is rounded up to 8, 16, 32 or 64.
|
||||
// In that case we can insert group id value using aligned 64-bit word access.
|
||||
ARROW_DCHECK(num_groupid_bits == 8 || num_groupid_bits == 16 ||
|
||||
num_groupid_bits == 32 || num_groupid_bits == 64);
|
||||
|
||||
const uint64_t num_block_bytes = (8 + num_groupid_bits);
|
||||
constexpr uint64_t stamp_mask = 0x7f;
|
||||
|
||||
int start_slot = (slot_id & 7);
|
||||
int stamp =
|
||||
static_cast<int>((hash >> (bits_hash_ - log_blocks_ - bits_stamp_)) & stamp_mask);
|
||||
uint64_t block_id = slot_id >> 3;
|
||||
uint8_t* blockbase = blocks_ + num_block_bytes * block_id;
|
||||
|
||||
blockbase[7 - start_slot] = static_cast<uint8_t>(stamp);
|
||||
int groupid_bit_offset = static_cast<int>(start_slot * num_groupid_bits);
|
||||
|
||||
// Block status bytes should start at an address aligned to 8 bytes
|
||||
ARROW_DCHECK((reinterpret_cast<uint64_t>(blockbase) & 7) == 0);
|
||||
uint64_t* ptr = reinterpret_cast<uint64_t*>(blockbase) + 1 + (groupid_bit_offset >> 6);
|
||||
*ptr |= (static_cast<uint64_t>(group_id) << (groupid_bit_offset & 63));
|
||||
}
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,75 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
/// \brief MapNode is an ExecNode type class which process a task like filter/project
|
||||
/// (See SubmitTask method) to each given ExecBatch object, which have one input, one
|
||||
/// output, and are pure functions on the input
|
||||
///
|
||||
/// A simple parallel runner is created with a "map_fn" which is just a function that
|
||||
/// takes a batch in and returns a batch. This simple parallel runner also needs an
|
||||
/// executor (use simple synchronous runner if there is no executor)
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/compute/exec/exec_plan.h"
|
||||
#include "arrow/compute/exec/util.h"
|
||||
#include "arrow/compute/type_fwd.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/type_fwd.h"
|
||||
#include "arrow/util/cancel.h"
|
||||
#include "arrow/util/type_fwd.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace compute {
|
||||
|
||||
class ARROW_EXPORT MapNode : public ExecNode {
|
||||
public:
|
||||
MapNode(ExecPlan* plan, std::vector<ExecNode*> inputs,
|
||||
std::shared_ptr<Schema> output_schema);
|
||||
|
||||
void ErrorReceived(ExecNode* input, Status error) override;
|
||||
|
||||
void InputFinished(ExecNode* input, int total_batches) override;
|
||||
|
||||
Status StartProducing() override;
|
||||
|
||||
void PauseProducing(ExecNode* output, int32_t counter) override;
|
||||
|
||||
void ResumeProducing(ExecNode* output, int32_t counter) override;
|
||||
|
||||
void StopProducing(ExecNode* output) override;
|
||||
|
||||
void StopProducing() override;
|
||||
|
||||
protected:
|
||||
void SubmitTask(std::function<Result<ExecBatch>(ExecBatch)> map_fn, ExecBatch batch);
|
||||
|
||||
virtual void Finish(Status finish_st = Status::OK());
|
||||
|
||||
protected:
|
||||
// Counter for the number of batches received
|
||||
AtomicCounter input_counter_;
|
||||
};
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,562 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <optional>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/compute/api_aggregate.h"
|
||||
#include "arrow/compute/api_vector.h"
|
||||
#include "arrow/compute/exec.h"
|
||||
#include "arrow/compute/exec/expression.h"
|
||||
#include "arrow/record_batch.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/util/async_generator.h"
|
||||
#include "arrow/util/async_util.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
namespace internal {
|
||||
|
||||
class Executor;
|
||||
|
||||
} // namespace internal
|
||||
|
||||
namespace compute {
|
||||
|
||||
using AsyncExecBatchGenerator = AsyncGenerator<std::optional<ExecBatch>>;
|
||||
|
||||
/// \addtogroup execnode-options
|
||||
/// @{
|
||||
class ARROW_EXPORT ExecNodeOptions {
|
||||
public:
|
||||
virtual ~ExecNodeOptions() = default;
|
||||
};
|
||||
|
||||
/// \brief Adapt an AsyncGenerator<ExecBatch> as a source node
|
||||
///
|
||||
/// plan->exec_context()->executor() will be used to parallelize pushing to
|
||||
/// outputs, if provided.
|
||||
class ARROW_EXPORT SourceNodeOptions : public ExecNodeOptions {
|
||||
public:
|
||||
SourceNodeOptions(std::shared_ptr<Schema> output_schema,
|
||||
std::function<Future<std::optional<ExecBatch>>()> generator)
|
||||
: output_schema(std::move(output_schema)), generator(std::move(generator)) {}
|
||||
|
||||
static Result<std::shared_ptr<SourceNodeOptions>> FromTable(const Table& table,
|
||||
arrow::internal::Executor*);
|
||||
|
||||
static Result<std::shared_ptr<SourceNodeOptions>> FromRecordBatchReader(
|
||||
std::shared_ptr<RecordBatchReader> reader, std::shared_ptr<Schema> schema,
|
||||
arrow::internal::Executor*);
|
||||
|
||||
std::shared_ptr<Schema> output_schema;
|
||||
std::function<Future<std::optional<ExecBatch>>()> generator;
|
||||
};
|
||||
|
||||
/// \brief An extended Source node which accepts a table
|
||||
class ARROW_EXPORT TableSourceNodeOptions : public ExecNodeOptions {
|
||||
public:
|
||||
static constexpr int64_t kDefaultMaxBatchSize = 1 << 20;
|
||||
TableSourceNodeOptions(std::shared_ptr<Table> table,
|
||||
int64_t max_batch_size = kDefaultMaxBatchSize)
|
||||
: table(table), max_batch_size(max_batch_size) {}
|
||||
|
||||
// arrow table which acts as the data source
|
||||
std::shared_ptr<Table> table;
|
||||
// Size of batches to emit from this node
|
||||
// If the table is larger the node will emit multiple batches from the
|
||||
// the table to be processed in parallel.
|
||||
int64_t max_batch_size;
|
||||
};
|
||||
|
||||
/// \brief Define a lazy resolved Arrow table.
|
||||
///
|
||||
/// The table uniquely identified by the names can typically be resolved at the time when
|
||||
/// the plan is to be consumed.
|
||||
///
|
||||
/// This node is for serialization purposes only and can never be executed.
|
||||
class ARROW_EXPORT NamedTableNodeOptions : public ExecNodeOptions {
|
||||
public:
|
||||
NamedTableNodeOptions(std::vector<std::string> names, std::shared_ptr<Schema> schema)
|
||||
: names(std::move(names)), schema(schema) {}
|
||||
|
||||
std::vector<std::string> names;
|
||||
std::shared_ptr<Schema> schema;
|
||||
};
|
||||
|
||||
/// \brief An extended Source node which accepts a schema
|
||||
///
|
||||
/// ItMaker is a maker of an iterator of tabular data.
|
||||
template <typename ItMaker>
|
||||
class ARROW_EXPORT SchemaSourceNodeOptions : public ExecNodeOptions {
|
||||
public:
|
||||
SchemaSourceNodeOptions(std::shared_ptr<Schema> schema, ItMaker it_maker,
|
||||
arrow::internal::Executor* io_executor = NULLPTR)
|
||||
: schema(schema), it_maker(std::move(it_maker)), io_executor(io_executor) {}
|
||||
|
||||
/// \brief The schema of the record batches from the iterator
|
||||
std::shared_ptr<Schema> schema;
|
||||
|
||||
/// \brief A maker of an iterator which acts as the data source
|
||||
ItMaker it_maker;
|
||||
|
||||
/// \brief The executor to use for scanning the iterator
|
||||
///
|
||||
/// Defaults to the default I/O executor.
|
||||
arrow::internal::Executor* io_executor;
|
||||
};
|
||||
|
||||
class ARROW_EXPORT RecordBatchReaderSourceNodeOptions : public ExecNodeOptions {
|
||||
public:
|
||||
RecordBatchReaderSourceNodeOptions(std::shared_ptr<RecordBatchReader> reader,
|
||||
arrow::internal::Executor* io_executor = NULLPTR)
|
||||
: reader(std::move(reader)), io_executor(io_executor) {}
|
||||
|
||||
/// \brief The RecordBatchReader which acts as the data source
|
||||
std::shared_ptr<RecordBatchReader> reader;
|
||||
|
||||
/// \brief The executor to use for the reader
|
||||
///
|
||||
/// Defaults to the default I/O executor.
|
||||
arrow::internal::Executor* io_executor;
|
||||
};
|
||||
|
||||
using ArrayVectorIteratorMaker = std::function<Iterator<std::shared_ptr<ArrayVector>>()>;
|
||||
/// \brief An extended Source node which accepts a schema and array-vectors
|
||||
class ARROW_EXPORT ArrayVectorSourceNodeOptions
|
||||
: public SchemaSourceNodeOptions<ArrayVectorIteratorMaker> {
|
||||
using SchemaSourceNodeOptions::SchemaSourceNodeOptions;
|
||||
};
|
||||
|
||||
using ExecBatchIteratorMaker = std::function<Iterator<std::shared_ptr<ExecBatch>>()>;
|
||||
/// \brief An extended Source node which accepts a schema and exec-batches
|
||||
class ARROW_EXPORT ExecBatchSourceNodeOptions
|
||||
: public SchemaSourceNodeOptions<ExecBatchIteratorMaker> {
|
||||
using SchemaSourceNodeOptions::SchemaSourceNodeOptions;
|
||||
};
|
||||
|
||||
using RecordBatchIteratorMaker = std::function<Iterator<std::shared_ptr<RecordBatch>>()>;
|
||||
/// \brief An extended Source node which accepts a schema and record-batches
|
||||
class ARROW_EXPORT RecordBatchSourceNodeOptions
|
||||
: public SchemaSourceNodeOptions<RecordBatchIteratorMaker> {
|
||||
using SchemaSourceNodeOptions::SchemaSourceNodeOptions;
|
||||
};
|
||||
|
||||
/// \brief Make a node which excludes some rows from batches passed through it
|
||||
///
|
||||
/// filter_expression will be evaluated against each batch which is pushed to
|
||||
/// this node. Any rows for which filter_expression does not evaluate to `true` will be
|
||||
/// excluded in the batch emitted by this node.
|
||||
class ARROW_EXPORT FilterNodeOptions : public ExecNodeOptions {
|
||||
public:
|
||||
explicit FilterNodeOptions(Expression filter_expression)
|
||||
: filter_expression(std::move(filter_expression)) {}
|
||||
|
||||
Expression filter_expression;
|
||||
};
|
||||
|
||||
/// \brief Make a node which executes expressions on input batches, producing new batches.
|
||||
///
|
||||
/// Each expression will be evaluated against each batch which is pushed to
|
||||
/// this node to produce a corresponding output column.
|
||||
///
|
||||
/// If names are not provided, the string representations of exprs will be used.
|
||||
class ARROW_EXPORT ProjectNodeOptions : public ExecNodeOptions {
|
||||
public:
|
||||
explicit ProjectNodeOptions(std::vector<Expression> expressions,
|
||||
std::vector<std::string> names = {})
|
||||
: expressions(std::move(expressions)), names(std::move(names)) {}
|
||||
|
||||
std::vector<Expression> expressions;
|
||||
std::vector<std::string> names;
|
||||
};
|
||||
|
||||
/// \brief Make a node which aggregates input batches, optionally grouped by keys.
|
||||
///
|
||||
/// If the keys attribute is a non-empty vector, then each aggregate in `aggregates` is
|
||||
/// expected to be a HashAggregate function. If the keys attribute is an empty vector,
|
||||
/// then each aggregate is assumed to be a ScalarAggregate function.
|
||||
class ARROW_EXPORT AggregateNodeOptions : public ExecNodeOptions {
|
||||
public:
|
||||
explicit AggregateNodeOptions(std::vector<Aggregate> aggregates,
|
||||
std::vector<FieldRef> keys = {})
|
||||
: aggregates(std::move(aggregates)), keys(std::move(keys)) {}
|
||||
|
||||
// aggregations which will be applied to the targetted fields
|
||||
std::vector<Aggregate> aggregates;
|
||||
// keys by which aggregations will be grouped
|
||||
std::vector<FieldRef> keys;
|
||||
};
|
||||
|
||||
constexpr int32_t kDefaultBackpressureHighBytes = 1 << 30; // 1GiB
|
||||
constexpr int32_t kDefaultBackpressureLowBytes = 1 << 28; // 256MiB
|
||||
|
||||
class ARROW_EXPORT BackpressureMonitor {
|
||||
public:
|
||||
virtual ~BackpressureMonitor() = default;
|
||||
virtual uint64_t bytes_in_use() = 0;
|
||||
virtual bool is_paused() = 0;
|
||||
};
|
||||
|
||||
/// \brief Options to control backpressure behavior
|
||||
struct ARROW_EXPORT BackpressureOptions {
|
||||
/// \brief Create default options that perform no backpressure
|
||||
BackpressureOptions() : resume_if_below(0), pause_if_above(0) {}
|
||||
/// \brief Create options that will perform backpressure
|
||||
///
|
||||
/// \param resume_if_below The producer should resume producing if the backpressure
|
||||
/// queue has fewer than resume_if_below items.
|
||||
/// \param pause_if_above The producer should pause producing if the backpressure
|
||||
/// queue has more than pause_if_above items
|
||||
BackpressureOptions(uint64_t resume_if_below, uint64_t pause_if_above)
|
||||
: resume_if_below(resume_if_below), pause_if_above(pause_if_above) {}
|
||||
|
||||
static BackpressureOptions DefaultBackpressure() {
|
||||
return BackpressureOptions(kDefaultBackpressureLowBytes,
|
||||
kDefaultBackpressureHighBytes);
|
||||
}
|
||||
|
||||
bool should_apply_backpressure() const { return pause_if_above > 0; }
|
||||
|
||||
uint64_t resume_if_below;
|
||||
uint64_t pause_if_above;
|
||||
};
|
||||
|
||||
/// \brief Add a sink node which forwards to an AsyncGenerator<ExecBatch>
|
||||
///
|
||||
/// Emitted batches will not be ordered.
|
||||
class ARROW_EXPORT SinkNodeOptions : public ExecNodeOptions {
|
||||
public:
|
||||
explicit SinkNodeOptions(std::function<Future<std::optional<ExecBatch>>()>* generator,
|
||||
std::shared_ptr<Schema>* schema,
|
||||
BackpressureOptions backpressure = {},
|
||||
BackpressureMonitor** backpressure_monitor = NULLPTR)
|
||||
: generator(generator),
|
||||
schema(schema),
|
||||
backpressure(backpressure),
|
||||
backpressure_monitor(backpressure_monitor) {}
|
||||
|
||||
explicit SinkNodeOptions(std::function<Future<std::optional<ExecBatch>>()>* generator,
|
||||
BackpressureOptions backpressure = {},
|
||||
BackpressureMonitor** backpressure_monitor = NULLPTR)
|
||||
: generator(generator),
|
||||
schema(NULLPTR),
|
||||
backpressure(std::move(backpressure)),
|
||||
backpressure_monitor(backpressure_monitor) {}
|
||||
|
||||
/// \brief A pointer to a generator of batches.
|
||||
///
|
||||
/// This will be set when the node is added to the plan and should be used to consume
|
||||
/// data from the plan. If this function is not called frequently enough then the sink
|
||||
/// node will start to accumulate data and may apply backpressure.
|
||||
std::function<Future<std::optional<ExecBatch>>()>* generator;
|
||||
/// \brief A pointer which will be set to the schema of the generated batches
|
||||
///
|
||||
/// This is optional, if nullptr is passed in then it will be ignored.
|
||||
/// This will be set when the node is added to the plan, before StartProducing is called
|
||||
std::shared_ptr<Schema>* schema;
|
||||
/// \brief Options to control when to apply backpressure
|
||||
///
|
||||
/// This is optional, the default is to never apply backpressure. If the plan is not
|
||||
/// consumed quickly enough the system may eventually run out of memory.
|
||||
BackpressureOptions backpressure;
|
||||
/// \brief A pointer to a backpressure monitor
|
||||
///
|
||||
/// This will be set when the node is added to the plan. This can be used to inspect
|
||||
/// the amount of data currently queued in the sink node. This is an optional utility
|
||||
/// and backpressure can be applied even if this is not used.
|
||||
BackpressureMonitor** backpressure_monitor;
|
||||
};
|
||||
|
||||
/// \brief Control used by a SinkNodeConsumer to pause & resume
|
||||
///
|
||||
/// Callers should ensure that they do not call Pause and Resume simultaneously and they
|
||||
/// should sequence things so that a call to Pause() is always followed by an eventual
|
||||
/// call to Resume()
|
||||
class ARROW_EXPORT BackpressureControl {
|
||||
public:
|
||||
virtual ~BackpressureControl() = default;
|
||||
/// \brief Ask the input to pause
|
||||
///
|
||||
/// This is best effort, batches may continue to arrive
|
||||
/// Must eventually be followed by a call to Resume() or deadlock will occur
|
||||
virtual void Pause() = 0;
|
||||
/// \brief Ask the input to resume
|
||||
virtual void Resume() = 0;
|
||||
};
|
||||
|
||||
class ARROW_EXPORT SinkNodeConsumer {
|
||||
public:
|
||||
virtual ~SinkNodeConsumer() = default;
|
||||
/// \brief Prepare any consumer state
|
||||
///
|
||||
/// This will be run once the schema is finalized as the plan is starting and
|
||||
/// before any calls to Consume. A common use is to save off the schema so that
|
||||
/// batches can be interpreted.
|
||||
/// TODO(ARROW-17837) Move ExecPlan* plan to query context
|
||||
virtual Status Init(const std::shared_ptr<Schema>& schema,
|
||||
BackpressureControl* backpressure_control, ExecPlan* plan) = 0;
|
||||
/// \brief Consume a batch of data
|
||||
virtual Status Consume(ExecBatch batch) = 0;
|
||||
/// \brief Signal to the consumer that the last batch has been delivered
|
||||
///
|
||||
/// The returned future should only finish when all outstanding tasks have completed
|
||||
virtual Future<> Finish() = 0;
|
||||
};
|
||||
|
||||
/// \brief Add a sink node which consumes data within the exec plan run
|
||||
class ARROW_EXPORT ConsumingSinkNodeOptions : public ExecNodeOptions {
|
||||
public:
|
||||
explicit ConsumingSinkNodeOptions(std::shared_ptr<SinkNodeConsumer> consumer,
|
||||
std::vector<std::string> names = {})
|
||||
: consumer(std::move(consumer)), names(std::move(names)) {}
|
||||
|
||||
std::shared_ptr<SinkNodeConsumer> consumer;
|
||||
/// \brief Names to rename the sink's schema fields to
|
||||
///
|
||||
/// If specified then names must be provided for all fields. Currently, only a flat
|
||||
/// schema is supported (see ARROW-15901).
|
||||
std::vector<std::string> names;
|
||||
};
|
||||
|
||||
/// \brief Make a node which sorts rows passed through it
|
||||
///
|
||||
/// All batches pushed to this node will be accumulated, then sorted, by the given
|
||||
/// fields. Then sorted batches will be forwarded to the generator in sorted order.
|
||||
class ARROW_EXPORT OrderBySinkNodeOptions : public SinkNodeOptions {
|
||||
public:
|
||||
explicit OrderBySinkNodeOptions(
|
||||
SortOptions sort_options,
|
||||
std::function<Future<std::optional<ExecBatch>>()>* generator)
|
||||
: SinkNodeOptions(generator), sort_options(std::move(sort_options)) {}
|
||||
|
||||
SortOptions sort_options;
|
||||
};
|
||||
|
||||
/// @}
|
||||
|
||||
enum class JoinType {
|
||||
LEFT_SEMI,
|
||||
RIGHT_SEMI,
|
||||
LEFT_ANTI,
|
||||
RIGHT_ANTI,
|
||||
INNER,
|
||||
LEFT_OUTER,
|
||||
RIGHT_OUTER,
|
||||
FULL_OUTER
|
||||
};
|
||||
|
||||
std::string ToString(JoinType t);
|
||||
|
||||
enum class JoinKeyCmp { EQ, IS };
|
||||
|
||||
/// \addtogroup execnode-options
|
||||
/// @{
|
||||
|
||||
/// \brief Make a node which implements join operation using hash join strategy.
|
||||
class ARROW_EXPORT HashJoinNodeOptions : public ExecNodeOptions {
|
||||
public:
|
||||
static constexpr const char* default_output_suffix_for_left = "";
|
||||
static constexpr const char* default_output_suffix_for_right = "";
|
||||
HashJoinNodeOptions(
|
||||
JoinType in_join_type, std::vector<FieldRef> in_left_keys,
|
||||
std::vector<FieldRef> in_right_keys, Expression filter = literal(true),
|
||||
std::string output_suffix_for_left = default_output_suffix_for_left,
|
||||
std::string output_suffix_for_right = default_output_suffix_for_right,
|
||||
bool disable_bloom_filter = false)
|
||||
: join_type(in_join_type),
|
||||
left_keys(std::move(in_left_keys)),
|
||||
right_keys(std::move(in_right_keys)),
|
||||
output_all(true),
|
||||
output_suffix_for_left(std::move(output_suffix_for_left)),
|
||||
output_suffix_for_right(std::move(output_suffix_for_right)),
|
||||
filter(std::move(filter)),
|
||||
disable_bloom_filter(disable_bloom_filter) {
|
||||
this->key_cmp.resize(this->left_keys.size());
|
||||
for (size_t i = 0; i < this->left_keys.size(); ++i) {
|
||||
this->key_cmp[i] = JoinKeyCmp::EQ;
|
||||
}
|
||||
}
|
||||
HashJoinNodeOptions(std::vector<FieldRef> in_left_keys,
|
||||
std::vector<FieldRef> in_right_keys)
|
||||
: left_keys(std::move(in_left_keys)), right_keys(std::move(in_right_keys)) {
|
||||
this->join_type = JoinType::INNER;
|
||||
this->output_all = true;
|
||||
this->output_suffix_for_left = default_output_suffix_for_left;
|
||||
this->output_suffix_for_right = default_output_suffix_for_right;
|
||||
this->key_cmp.resize(this->left_keys.size());
|
||||
for (size_t i = 0; i < this->left_keys.size(); ++i) {
|
||||
this->key_cmp[i] = JoinKeyCmp::EQ;
|
||||
}
|
||||
this->filter = literal(true);
|
||||
}
|
||||
HashJoinNodeOptions(
|
||||
JoinType join_type, std::vector<FieldRef> left_keys,
|
||||
std::vector<FieldRef> right_keys, std::vector<FieldRef> left_output,
|
||||
std::vector<FieldRef> right_output, Expression filter = literal(true),
|
||||
std::string output_suffix_for_left = default_output_suffix_for_left,
|
||||
std::string output_suffix_for_right = default_output_suffix_for_right,
|
||||
bool disable_bloom_filter = false)
|
||||
: join_type(join_type),
|
||||
left_keys(std::move(left_keys)),
|
||||
right_keys(std::move(right_keys)),
|
||||
output_all(false),
|
||||
left_output(std::move(left_output)),
|
||||
right_output(std::move(right_output)),
|
||||
output_suffix_for_left(std::move(output_suffix_for_left)),
|
||||
output_suffix_for_right(std::move(output_suffix_for_right)),
|
||||
filter(std::move(filter)),
|
||||
disable_bloom_filter(disable_bloom_filter) {
|
||||
this->key_cmp.resize(this->left_keys.size());
|
||||
for (size_t i = 0; i < this->left_keys.size(); ++i) {
|
||||
this->key_cmp[i] = JoinKeyCmp::EQ;
|
||||
}
|
||||
}
|
||||
HashJoinNodeOptions(
|
||||
JoinType join_type, std::vector<FieldRef> left_keys,
|
||||
std::vector<FieldRef> right_keys, std::vector<FieldRef> left_output,
|
||||
std::vector<FieldRef> right_output, std::vector<JoinKeyCmp> key_cmp,
|
||||
Expression filter = literal(true),
|
||||
std::string output_suffix_for_left = default_output_suffix_for_left,
|
||||
std::string output_suffix_for_right = default_output_suffix_for_right,
|
||||
bool disable_bloom_filter = false)
|
||||
: join_type(join_type),
|
||||
left_keys(std::move(left_keys)),
|
||||
right_keys(std::move(right_keys)),
|
||||
output_all(false),
|
||||
left_output(std::move(left_output)),
|
||||
right_output(std::move(right_output)),
|
||||
key_cmp(std::move(key_cmp)),
|
||||
output_suffix_for_left(std::move(output_suffix_for_left)),
|
||||
output_suffix_for_right(std::move(output_suffix_for_right)),
|
||||
filter(std::move(filter)),
|
||||
disable_bloom_filter(disable_bloom_filter) {}
|
||||
|
||||
HashJoinNodeOptions() = default;
|
||||
|
||||
// type of join (inner, left, semi...)
|
||||
JoinType join_type = JoinType::INNER;
|
||||
// key fields from left input
|
||||
std::vector<FieldRef> left_keys;
|
||||
// key fields from right input
|
||||
std::vector<FieldRef> right_keys;
|
||||
// if set all valid fields from both left and right input will be output
|
||||
// (and field ref vectors for output fields will be ignored)
|
||||
bool output_all = false;
|
||||
// output fields passed from left input
|
||||
std::vector<FieldRef> left_output;
|
||||
// output fields passed from right input
|
||||
std::vector<FieldRef> right_output;
|
||||
// key comparison function (determines whether a null key is equal another null
|
||||
// key or not)
|
||||
std::vector<JoinKeyCmp> key_cmp;
|
||||
// suffix added to names of output fields coming from left input (used to distinguish,
|
||||
// if necessary, between fields of the same name in left and right input and can be left
|
||||
// empty if there are no name collisions)
|
||||
std::string output_suffix_for_left;
|
||||
// suffix added to names of output fields coming from right input
|
||||
std::string output_suffix_for_right;
|
||||
// residual filter which is applied to matching rows. Rows that do not match
|
||||
// the filter are not included. The filter is applied against the
|
||||
// concatenated input schema (left fields then right fields) and can reference
|
||||
// fields that are not included in the output.
|
||||
Expression filter = literal(true);
|
||||
// whether or not to disable Bloom filters in this join
|
||||
bool disable_bloom_filter = false;
|
||||
};
|
||||
|
||||
/// \brief Make a node which implements asof join operation
|
||||
///
|
||||
/// Note, this API is experimental and will change in the future
|
||||
///
|
||||
/// This node takes one left table and any number of right tables, and asof joins them
|
||||
/// together. Batches produced by each input must be ordered by the "on" key.
|
||||
/// This node will output one row for each row in the left table.
|
||||
class ARROW_EXPORT AsofJoinNodeOptions : public ExecNodeOptions {
|
||||
public:
|
||||
/// \brief Keys for one input table of the AsofJoin operation
|
||||
///
|
||||
/// The keys must be consistent across the input tables:
|
||||
/// Each "on" key must refer to a field of the same type and units across the tables.
|
||||
/// Each "by" key must refer to a list of fields of the same types across the tables.
|
||||
struct Keys {
|
||||
/// \brief "on" key for the join.
|
||||
///
|
||||
/// The input table must be sorted by the "on" key. Must be a single field of a common
|
||||
/// type. Inexact match is used on the "on" key. i.e., a row is considered a match iff
|
||||
/// left_on - tolerance <= right_on <= left_on.
|
||||
/// Currently, the "on" key must be of an integer, date, or timestamp type.
|
||||
FieldRef on_key;
|
||||
/// \brief "by" key for the join.
|
||||
///
|
||||
/// Each input table must have each field of the "by" key. Exact equality is used for
|
||||
/// each field of the "by" key.
|
||||
/// Currently, each field of the "by" key must be of an integer, date, timestamp, or
|
||||
/// base-binary type.
|
||||
std::vector<FieldRef> by_key;
|
||||
};
|
||||
|
||||
AsofJoinNodeOptions(std::vector<Keys> input_keys, int64_t tolerance)
|
||||
: input_keys(std::move(input_keys)), tolerance(tolerance) {}
|
||||
|
||||
/// \brief AsofJoin keys per input table.
|
||||
///
|
||||
/// \see `Keys` for details.
|
||||
std::vector<Keys> input_keys;
|
||||
/// \brief Tolerance for inexact "on" key matching. Must be non-negative.
|
||||
///
|
||||
/// The tolerance is interpreted in the same units as the "on" key.
|
||||
int64_t tolerance;
|
||||
};
|
||||
|
||||
/// \brief Make a node which select top_k/bottom_k rows passed through it
|
||||
///
|
||||
/// All batches pushed to this node will be accumulated, then selected, by the given
|
||||
/// fields. Then sorted batches will be forwarded to the generator in sorted order.
|
||||
class ARROW_EXPORT SelectKSinkNodeOptions : public SinkNodeOptions {
|
||||
public:
|
||||
explicit SelectKSinkNodeOptions(
|
||||
SelectKOptions select_k_options,
|
||||
std::function<Future<std::optional<ExecBatch>>()>* generator)
|
||||
: SinkNodeOptions(generator), select_k_options(std::move(select_k_options)) {}
|
||||
|
||||
/// SelectK options
|
||||
SelectKOptions select_k_options;
|
||||
};
|
||||
|
||||
/// \brief Adapt a Table as a sink node
|
||||
///
|
||||
/// obtains the output of an execution plan to
|
||||
/// a table pointer.
|
||||
class ARROW_EXPORT TableSinkNodeOptions : public ExecNodeOptions {
|
||||
public:
|
||||
explicit TableSinkNodeOptions(std::shared_ptr<Table>* output_table)
|
||||
: output_table(output_table) {}
|
||||
|
||||
std::shared_ptr<Table>* output_table;
|
||||
};
|
||||
|
||||
/// @}
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,53 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/compute/exec/options.h"
|
||||
#include "arrow/record_batch.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/type.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace compute {
|
||||
|
||||
class OrderByImpl {
|
||||
public:
|
||||
virtual ~OrderByImpl() = default;
|
||||
|
||||
virtual void InputReceived(const std::shared_ptr<RecordBatch>& batch) = 0;
|
||||
|
||||
virtual Result<Datum> DoFinish() = 0;
|
||||
|
||||
virtual std::string ToString() const = 0;
|
||||
|
||||
static Result<std::unique_ptr<OrderByImpl>> MakeSort(
|
||||
ExecContext* ctx, const std::shared_ptr<Schema>& output_schema,
|
||||
const SortOptions& options);
|
||||
|
||||
static Result<std::unique_ptr<OrderByImpl>> MakeSelectK(
|
||||
ExecContext* ctx, const std::shared_ptr<Schema>& output_schema,
|
||||
const SelectKOptions& options);
|
||||
};
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,184 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
#include <cassert>
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
#include <random>
|
||||
#include "arrow/buffer.h"
|
||||
#include "arrow/compute/exec/util.h"
|
||||
#include "arrow/util/pcg_random.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace compute {
|
||||
|
||||
class PartitionSort {
|
||||
public:
|
||||
/// \brief Bucket sort rows on partition ids in O(num_rows) time.
|
||||
///
|
||||
/// Include in the output exclusive cummulative sum of bucket sizes.
|
||||
/// This corresponds to ranges in the sorted array containing all row ids for
|
||||
/// each of the partitions.
|
||||
///
|
||||
/// prtn_ranges must be initailized and have at least prtn_ranges + 1 elements
|
||||
/// when this method returns prtn_ranges[i] will contains the total number of
|
||||
/// elements in partitions 0 through i. prtn_ranges[0] will be 0.
|
||||
///
|
||||
/// prtn_id_impl must be a function that takes in a row id (int) and returns
|
||||
/// a partition id (int). The returned partition id must be between 0 and
|
||||
/// num_prtns (exclusive).
|
||||
///
|
||||
/// output_pos_impl is a function that takes in a row id (int) and a position (int)
|
||||
/// in the bucket sorted output. The function should insert the row in the
|
||||
/// output.
|
||||
///
|
||||
/// For example:
|
||||
///
|
||||
/// in_arr: [5, 7, 2, 3, 5, 4]
|
||||
/// num_prtns: 3
|
||||
/// prtn_id_impl: [&in_arr] (int row_id) { return in_arr[row_id] / 3; }
|
||||
/// output_pos_impl: [&out_arr] (int row_id, int pos) { out_arr[pos] = row_id; }
|
||||
///
|
||||
/// After Execution
|
||||
/// out_arr: [2, 5, 3, 5, 4, 7]
|
||||
/// prtn_ranges: [0, 1, 5, 6]
|
||||
template <class INPUT_PRTN_ID_FN, class OUTPUT_POS_FN>
|
||||
static void Eval(int64_t num_rows, int num_prtns, uint16_t* prtn_ranges,
|
||||
INPUT_PRTN_ID_FN prtn_id_impl, OUTPUT_POS_FN output_pos_impl) {
|
||||
ARROW_DCHECK(num_rows > 0 && num_rows <= (1 << 15));
|
||||
ARROW_DCHECK(num_prtns >= 1 && num_prtns <= (1 << 15));
|
||||
|
||||
memset(prtn_ranges, 0, (num_prtns + 1) * sizeof(uint16_t));
|
||||
|
||||
for (int64_t i = 0; i < num_rows; ++i) {
|
||||
int prtn_id = static_cast<int>(prtn_id_impl(i));
|
||||
++prtn_ranges[prtn_id + 1];
|
||||
}
|
||||
|
||||
uint16_t sum = 0;
|
||||
for (int i = 0; i < num_prtns; ++i) {
|
||||
uint16_t sum_next = sum + prtn_ranges[i + 1];
|
||||
prtn_ranges[i + 1] = sum;
|
||||
sum = sum_next;
|
||||
}
|
||||
|
||||
for (int64_t i = 0; i < num_rows; ++i) {
|
||||
int prtn_id = static_cast<int>(prtn_id_impl(i));
|
||||
int pos = prtn_ranges[prtn_id + 1]++;
|
||||
output_pos_impl(i, pos);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/// \brief A control for synchronizing threads on a partitionable workload
|
||||
class PartitionLocks {
|
||||
public:
|
||||
PartitionLocks();
|
||||
~PartitionLocks();
|
||||
/// \brief Initializes the control, must be called before use
|
||||
///
|
||||
/// \param num_threads Maximum number of threads that will access the partitions
|
||||
/// \param num_prtns Number of partitions to synchronize
|
||||
void Init(size_t num_threads, int num_prtns);
|
||||
/// \brief Cleans up the control, it should not be used after this call
|
||||
void CleanUp();
|
||||
/// \brief Acquire a partition to work on one
|
||||
///
|
||||
/// \param thread_id The index of the thread trying to acquire the partition lock
|
||||
/// \param num_prtns Length of prtns_to_try, must be <= num_prtns used in Init
|
||||
/// \param prtns_to_try An array of partitions that still have remaining work
|
||||
/// \param limit_retries If false, this method will spinwait forever until success
|
||||
/// \param max_retries Max times to attempt checking out work before returning false
|
||||
/// \param[out] locked_prtn_id The id of the partition locked
|
||||
/// \param[out] locked_prtn_id_pos The index of the partition locked in prtns_to_try
|
||||
/// \return True if a partition was locked, false if max_retries was attempted
|
||||
/// without successfully acquiring a lock
|
||||
///
|
||||
/// This method is thread safe
|
||||
bool AcquirePartitionLock(size_t thread_id, int num_prtns, const int* prtns_to_try,
|
||||
bool limit_retries, int max_retries, int* locked_prtn_id,
|
||||
int* locked_prtn_id_pos);
|
||||
/// \brief Release a partition so that other threads can work on it
|
||||
void ReleasePartitionLock(int prtn_id);
|
||||
|
||||
// Executes (synchronously and using current thread) the same operation on a set of
|
||||
// multiple partitions. Tries to minimize partition locking overhead by randomizing and
|
||||
// adjusting order in which partitions are processed.
|
||||
//
|
||||
// PROCESS_PRTN_FN is a callback which will be executed for each partition after
|
||||
// acquiring the lock for that partition. It gets partition id as an argument.
|
||||
// IS_PRTN_EMPTY_FN is a callback which filters out (when returning true) partitions
|
||||
// with specific ids from processing.
|
||||
//
|
||||
template <typename IS_PRTN_EMPTY_FN, typename PROCESS_PRTN_FN>
|
||||
Status ForEachPartition(size_t thread_id,
|
||||
/*scratch space buffer with space for one element per partition;
|
||||
dirty in and dirty out*/
|
||||
int* temp_unprocessed_prtns, IS_PRTN_EMPTY_FN is_prtn_empty_fn,
|
||||
PROCESS_PRTN_FN process_prtn_fn) {
|
||||
int num_unprocessed_partitions = 0;
|
||||
for (int i = 0; i < num_prtns_; ++i) {
|
||||
bool is_prtn_empty = is_prtn_empty_fn(i);
|
||||
if (!is_prtn_empty) {
|
||||
temp_unprocessed_prtns[num_unprocessed_partitions++] = i;
|
||||
}
|
||||
}
|
||||
while (num_unprocessed_partitions > 0) {
|
||||
int locked_prtn_id;
|
||||
int locked_prtn_id_pos;
|
||||
AcquirePartitionLock(thread_id, num_unprocessed_partitions, temp_unprocessed_prtns,
|
||||
/*limit_retries=*/false, /*max_retries=*/-1, &locked_prtn_id,
|
||||
&locked_prtn_id_pos);
|
||||
{
|
||||
class AutoReleaseLock {
|
||||
public:
|
||||
AutoReleaseLock(PartitionLocks* locks, int prtn_id)
|
||||
: locks(locks), prtn_id(prtn_id) {}
|
||||
~AutoReleaseLock() { locks->ReleasePartitionLock(prtn_id); }
|
||||
PartitionLocks* locks;
|
||||
int prtn_id;
|
||||
} auto_release_lock(this, locked_prtn_id);
|
||||
ARROW_RETURN_NOT_OK(process_prtn_fn(locked_prtn_id));
|
||||
}
|
||||
if (locked_prtn_id_pos < num_unprocessed_partitions - 1) {
|
||||
temp_unprocessed_prtns[locked_prtn_id_pos] =
|
||||
temp_unprocessed_prtns[num_unprocessed_partitions - 1];
|
||||
}
|
||||
--num_unprocessed_partitions;
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
private:
|
||||
std::atomic<bool>* lock_ptr(int prtn_id);
|
||||
int random_int(size_t thread_id, int num_values);
|
||||
|
||||
struct PartitionLock {
|
||||
static constexpr int kCacheLineBytes = 64;
|
||||
std::atomic<bool> lock;
|
||||
uint8_t padding[kCacheLineBytes];
|
||||
};
|
||||
int num_prtns_;
|
||||
std::unique_ptr<PartitionLock[]> locks_;
|
||||
std::unique_ptr<arrow::random::pcg32_fast[]> rngs_;
|
||||
};
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,161 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#include "arrow/compute/exec.h"
|
||||
#include "arrow/compute/exec/task_util.h"
|
||||
#include "arrow/compute/exec/util.h"
|
||||
#include "arrow/io/interfaces.h"
|
||||
#include "arrow/util/async_util.h"
|
||||
|
||||
#pragma once
|
||||
|
||||
namespace arrow {
|
||||
|
||||
using io::IOContext;
|
||||
namespace compute {
|
||||
struct ARROW_EXPORT QueryOptions {
|
||||
QueryOptions();
|
||||
|
||||
/// \brief Should the plan use a legacy batching strategy
|
||||
///
|
||||
/// This is currently in place only to support the Scanner::ToTable
|
||||
/// method. This method relies on batch indices from the scanner
|
||||
/// remaining consistent. This is impractical in the ExecPlan which
|
||||
/// might slice batches as needed (e.g. for a join)
|
||||
///
|
||||
/// However, it still works for simple plans and this is the only way
|
||||
/// we have at the moment for maintaining implicit order.
|
||||
bool use_legacy_batching;
|
||||
};
|
||||
|
||||
class ARROW_EXPORT QueryContext {
|
||||
public:
|
||||
QueryContext(QueryOptions opts = {},
|
||||
ExecContext exec_context = *default_exec_context());
|
||||
|
||||
Status Init(size_t max_num_threads, util::AsyncTaskScheduler* scheduler);
|
||||
|
||||
const ::arrow::internal::CpuInfo* cpu_info() const;
|
||||
int64_t hardware_flags() const;
|
||||
const QueryOptions& options() const { return options_; }
|
||||
MemoryPool* memory_pool() const { return exec_context_.memory_pool(); }
|
||||
::arrow::internal::Executor* executor() const { return exec_context_.executor(); }
|
||||
ExecContext* exec_context() { return &exec_context_; }
|
||||
IOContext* io_context() { return &io_context_; }
|
||||
TaskScheduler* scheduler() { return task_scheduler_.get(); }
|
||||
util::AsyncTaskScheduler* async_scheduler() { return async_scheduler_; }
|
||||
|
||||
size_t GetThreadIndex();
|
||||
size_t max_concurrency() const;
|
||||
Result<util::TempVectorStack*> GetTempStack(size_t thread_index);
|
||||
|
||||
/// \brief Start an external task
|
||||
///
|
||||
/// This should be avoided if possible. It is kept in for now for legacy
|
||||
/// purposes. This should be called before the external task is started. If
|
||||
/// a valid future is returned then it should be marked complete when the
|
||||
/// external task has finished.
|
||||
///
|
||||
/// \return an invalid future if the plan has already ended, otherwise this
|
||||
/// returns a future that must be completed when the external task
|
||||
/// finishes.
|
||||
Result<Future<>> BeginExternalTask();
|
||||
|
||||
/// \brief Add a single function as a task to the query's task group
|
||||
/// on the compute threadpool.
|
||||
///
|
||||
/// \param fn The task to run. Takes no arguments and returns a Status.
|
||||
Status ScheduleTask(std::function<Status()> fn);
|
||||
/// \brief Add a single function as a task to the query's task group
|
||||
/// on the compute threadpool.
|
||||
///
|
||||
/// \param fn The task to run. Takes the thread index and returns a Status.
|
||||
Status ScheduleTask(std::function<Status(size_t)> fn);
|
||||
/// \brief Add a single function as a task to the query's task group on
|
||||
/// the IO thread pool
|
||||
///
|
||||
/// \param fn The task to run. Returns a status.
|
||||
Status ScheduleIOTask(std::function<Status()> fn);
|
||||
|
||||
// Register/Start TaskGroup is a way of performing a "Parallel For" pattern:
|
||||
// - The task function takes the thread index and the index of the task
|
||||
// - The on_finished function takes the thread index
|
||||
// Returns an integer ID that will be used to reference the task group in
|
||||
// StartTaskGroup. At runtime, call StartTaskGroup with the ID and the number of times
|
||||
// you'd like the task to be executed. The need to register a task group before use will
|
||||
// be removed after we rewrite the scheduler.
|
||||
/// \brief Register a "parallel for" task group with the scheduler
|
||||
///
|
||||
/// \param task The function implementing the task. Takes the thread_index and
|
||||
/// the task index.
|
||||
/// \param on_finished The function that gets run once all tasks have been completed.
|
||||
/// Takes the thread_index.
|
||||
///
|
||||
/// Must be called inside of ExecNode::Init.
|
||||
int RegisterTaskGroup(std::function<Status(size_t, int64_t)> task,
|
||||
std::function<Status(size_t)> on_finished);
|
||||
|
||||
/// \brief Start the task group with the specified ID. This can only
|
||||
/// be called once per task_group_id.
|
||||
///
|
||||
/// \param task_group_id The ID of the task group to run
|
||||
/// \param num_tasks The number of times to run the task
|
||||
Status StartTaskGroup(int task_group_id, int64_t num_tasks);
|
||||
|
||||
// This is an RAII class for keeping track of in-flight file IO. Useful for getting
|
||||
// an estimate of memory use, and how much memory we expect to be freed soon.
|
||||
// Returned by ReportTempFileIO.
|
||||
struct [[nodiscard]] TempFileIOMark {
|
||||
QueryContext* ctx_;
|
||||
size_t bytes_;
|
||||
|
||||
TempFileIOMark(QueryContext* ctx, size_t bytes) : ctx_(ctx), bytes_(bytes) {
|
||||
ctx_->in_flight_bytes_to_disk_.fetch_add(bytes_, std::memory_order_acquire);
|
||||
}
|
||||
|
||||
ARROW_DISALLOW_COPY_AND_ASSIGN(TempFileIOMark);
|
||||
|
||||
~TempFileIOMark() {
|
||||
ctx_->in_flight_bytes_to_disk_.fetch_sub(bytes_, std::memory_order_release);
|
||||
}
|
||||
};
|
||||
|
||||
TempFileIOMark ReportTempFileIO(size_t bytes) { return {this, bytes}; }
|
||||
|
||||
size_t GetCurrentTempFileIO() { return in_flight_bytes_to_disk_.load(); }
|
||||
|
||||
private:
|
||||
QueryOptions options_;
|
||||
// To be replaced with Acero-specific context once scheduler is done and
|
||||
// we don't need ExecContext for kernels
|
||||
ExecContext exec_context_;
|
||||
IOContext io_context_;
|
||||
|
||||
util::AsyncTaskScheduler* async_scheduler_ = NULLPTR;
|
||||
std::unique_ptr<TaskScheduler> task_scheduler_ = TaskScheduler::Make();
|
||||
|
||||
ThreadIndexer thread_indexer_;
|
||||
struct ThreadLocalData {
|
||||
bool is_init = false;
|
||||
util::TempVectorStack stack;
|
||||
};
|
||||
std::vector<ThreadLocalData> tld_;
|
||||
|
||||
std::atomic<size_t> in_flight_bytes_to_disk_{0};
|
||||
};
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,226 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/compute/light_array.h" // for KeyColumnMetadata
|
||||
#include "arrow/type.h" // for DataType, FieldRef, Field and Schema
|
||||
|
||||
namespace arrow {
|
||||
|
||||
using internal::checked_cast;
|
||||
|
||||
namespace compute {
|
||||
|
||||
// Identifiers for all different row schemas that are used in a join
|
||||
//
|
||||
enum class HashJoinProjection : int {
|
||||
INPUT = 0,
|
||||
KEY = 1,
|
||||
PAYLOAD = 2,
|
||||
FILTER = 3,
|
||||
OUTPUT = 4
|
||||
};
|
||||
|
||||
struct SchemaProjectionMap {
|
||||
static constexpr int kMissingField = -1;
|
||||
int num_cols;
|
||||
const int* source_to_base;
|
||||
const int* base_to_target;
|
||||
inline int get(int i) const {
|
||||
ARROW_DCHECK(i >= 0 && i < num_cols);
|
||||
ARROW_DCHECK(source_to_base[i] != kMissingField);
|
||||
return base_to_target[source_to_base[i]];
|
||||
}
|
||||
};
|
||||
|
||||
/// Helper class for managing different projections of the same row schema.
|
||||
/// Used to efficiently map any field in one projection to a corresponding field in
|
||||
/// another projection.
|
||||
/// Materialized mappings are generated lazily at the time of the first access.
|
||||
/// Thread-safe apart from initialization.
|
||||
template <typename ProjectionIdEnum>
|
||||
class SchemaProjectionMaps {
|
||||
public:
|
||||
static constexpr int kMissingField = -1;
|
||||
|
||||
Status Init(ProjectionIdEnum full_schema_handle, const Schema& schema,
|
||||
const std::vector<ProjectionIdEnum>& projection_handles,
|
||||
const std::vector<const std::vector<FieldRef>*>& projections) {
|
||||
ARROW_DCHECK(projection_handles.size() == projections.size());
|
||||
ARROW_RETURN_NOT_OK(RegisterSchema(full_schema_handle, schema));
|
||||
for (size_t i = 0; i < projections.size(); ++i) {
|
||||
ARROW_RETURN_NOT_OK(
|
||||
RegisterProjectedSchema(projection_handles[i], *(projections[i]), schema));
|
||||
}
|
||||
RegisterEnd();
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
int num_cols(ProjectionIdEnum schema_handle) const {
|
||||
int id = schema_id(schema_handle);
|
||||
return static_cast<int>(schemas_[id].second.data_types.size());
|
||||
}
|
||||
|
||||
bool is_empty(ProjectionIdEnum schema_handle) const {
|
||||
return num_cols(schema_handle) == 0;
|
||||
}
|
||||
|
||||
const std::string& field_name(ProjectionIdEnum schema_handle, int field_id) const {
|
||||
int id = schema_id(schema_handle);
|
||||
return schemas_[id].second.field_names[field_id];
|
||||
}
|
||||
|
||||
const std::shared_ptr<DataType>& data_type(ProjectionIdEnum schema_handle,
|
||||
int field_id) const {
|
||||
int id = schema_id(schema_handle);
|
||||
return schemas_[id].second.data_types[field_id];
|
||||
}
|
||||
|
||||
const std::vector<std::shared_ptr<DataType>>& data_types(
|
||||
ProjectionIdEnum schema_handle) const {
|
||||
int id = schema_id(schema_handle);
|
||||
return schemas_[id].second.data_types;
|
||||
}
|
||||
|
||||
SchemaProjectionMap map(ProjectionIdEnum from, ProjectionIdEnum to) const {
|
||||
int id_from = schema_id(from);
|
||||
int id_to = schema_id(to);
|
||||
SchemaProjectionMap result;
|
||||
result.num_cols = num_cols(from);
|
||||
result.source_to_base = mappings_[id_from].data();
|
||||
result.base_to_target = inverse_mappings_[id_to].data();
|
||||
return result;
|
||||
}
|
||||
|
||||
protected:
|
||||
struct FieldInfos {
|
||||
std::vector<int> field_paths;
|
||||
std::vector<std::string> field_names;
|
||||
std::vector<std::shared_ptr<DataType>> data_types;
|
||||
};
|
||||
|
||||
Status RegisterSchema(ProjectionIdEnum handle, const Schema& schema) {
|
||||
FieldInfos out_fields;
|
||||
const FieldVector& in_fields = schema.fields();
|
||||
out_fields.field_paths.resize(in_fields.size());
|
||||
out_fields.field_names.resize(in_fields.size());
|
||||
out_fields.data_types.resize(in_fields.size());
|
||||
for (size_t i = 0; i < in_fields.size(); ++i) {
|
||||
const std::string& name = in_fields[i]->name();
|
||||
const std::shared_ptr<DataType>& type = in_fields[i]->type();
|
||||
out_fields.field_paths[i] = static_cast<int>(i);
|
||||
out_fields.field_names[i] = name;
|
||||
out_fields.data_types[i] = type;
|
||||
}
|
||||
schemas_.push_back(std::make_pair(handle, out_fields));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status RegisterProjectedSchema(ProjectionIdEnum handle,
|
||||
const std::vector<FieldRef>& selected_fields,
|
||||
const Schema& full_schema) {
|
||||
FieldInfos out_fields;
|
||||
const FieldVector& in_fields = full_schema.fields();
|
||||
out_fields.field_paths.resize(selected_fields.size());
|
||||
out_fields.field_names.resize(selected_fields.size());
|
||||
out_fields.data_types.resize(selected_fields.size());
|
||||
for (size_t i = 0; i < selected_fields.size(); ++i) {
|
||||
// All fields must be found in schema without ambiguity
|
||||
ARROW_ASSIGN_OR_RAISE(auto match, selected_fields[i].FindOne(full_schema));
|
||||
const std::string& name = in_fields[match[0]]->name();
|
||||
const std::shared_ptr<DataType>& type = in_fields[match[0]]->type();
|
||||
out_fields.field_paths[i] = match[0];
|
||||
out_fields.field_names[i] = name;
|
||||
out_fields.data_types[i] = type;
|
||||
}
|
||||
schemas_.push_back(std::make_pair(handle, out_fields));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
void RegisterEnd() {
|
||||
size_t size = schemas_.size();
|
||||
mappings_.resize(size);
|
||||
inverse_mappings_.resize(size);
|
||||
int id_base = 0;
|
||||
for (size_t i = 0; i < size; ++i) {
|
||||
GenerateMapForProjection(static_cast<int>(i), id_base);
|
||||
}
|
||||
}
|
||||
|
||||
int schema_id(ProjectionIdEnum schema_handle) const {
|
||||
for (size_t i = 0; i < schemas_.size(); ++i) {
|
||||
if (schemas_[i].first == schema_handle) {
|
||||
return static_cast<int>(i);
|
||||
}
|
||||
}
|
||||
// We should never get here
|
||||
ARROW_DCHECK(false);
|
||||
return -1;
|
||||
}
|
||||
|
||||
void GenerateMapForProjection(int id_proj, int id_base) {
|
||||
int num_cols_proj = static_cast<int>(schemas_[id_proj].second.data_types.size());
|
||||
int num_cols_base = static_cast<int>(schemas_[id_base].second.data_types.size());
|
||||
|
||||
std::vector<int>& mapping = mappings_[id_proj];
|
||||
std::vector<int>& inverse_mapping = inverse_mappings_[id_proj];
|
||||
mapping.resize(num_cols_proj);
|
||||
inverse_mapping.resize(num_cols_base);
|
||||
|
||||
if (id_proj == id_base) {
|
||||
for (int i = 0; i < num_cols_base; ++i) {
|
||||
mapping[i] = inverse_mapping[i] = i;
|
||||
}
|
||||
} else {
|
||||
const FieldInfos& fields_proj = schemas_[id_proj].second;
|
||||
const FieldInfos& fields_base = schemas_[id_base].second;
|
||||
for (int i = 0; i < num_cols_base; ++i) {
|
||||
inverse_mapping[i] = SchemaProjectionMap::kMissingField;
|
||||
}
|
||||
for (int i = 0; i < num_cols_proj; ++i) {
|
||||
int field_id = SchemaProjectionMap::kMissingField;
|
||||
for (int j = 0; j < num_cols_base; ++j) {
|
||||
if (fields_proj.field_paths[i] == fields_base.field_paths[j]) {
|
||||
field_id = j;
|
||||
// If there are multiple matches for the same input field,
|
||||
// it will be mapped to the first match.
|
||||
break;
|
||||
}
|
||||
}
|
||||
ARROW_DCHECK(field_id != SchemaProjectionMap::kMissingField);
|
||||
mapping[i] = field_id;
|
||||
inverse_mapping[field_id] = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// vector used as a mapping from ProjectionIdEnum to fields
|
||||
std::vector<std::pair<ProjectionIdEnum, FieldInfos>> schemas_;
|
||||
std::vector<std::vector<int>> mappings_;
|
||||
std::vector<std::vector<int>> inverse_mappings_;
|
||||
};
|
||||
|
||||
using HashJoinProjectionMaps = SchemaProjectionMaps<HashJoinProjection>;
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,761 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include "arrow/compute/exec/key_map.h"
|
||||
#include "arrow/compute/exec/options.h"
|
||||
#include "arrow/compute/exec/partition_util.h"
|
||||
#include "arrow/compute/exec/schema_util.h"
|
||||
#include "arrow/compute/exec/task_util.h"
|
||||
#include "arrow/compute/kernels/row_encoder.h"
|
||||
#include "arrow/compute/light_array.h"
|
||||
#include "arrow/compute/row/encode_internal.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace compute {
|
||||
|
||||
class RowArrayAccessor {
|
||||
public:
|
||||
// Find the index of this varbinary column within the sequence of all
|
||||
// varbinary columns encoded in rows.
|
||||
//
|
||||
static int VarbinaryColumnId(const RowTableMetadata& row_metadata, int column_id);
|
||||
|
||||
// Calculate how many rows to skip from the tail of the
|
||||
// sequence of selected rows, such that the total size of skipped rows is at
|
||||
// least equal to the size specified by the caller. Skipping of the tail rows
|
||||
// is used to allow for faster processing by the caller of remaining rows
|
||||
// without checking buffer bounds (useful with SIMD or fixed size memory loads
|
||||
// and stores).
|
||||
//
|
||||
static int NumRowsToSkip(const RowTableImpl& rows, int column_id, int num_rows,
|
||||
const uint32_t* row_ids, int num_tail_bytes_to_skip);
|
||||
|
||||
// The supplied lambda will be called for each row in the given list of rows.
|
||||
// The arguments given to it will be:
|
||||
// - index of a row (within the set of selected rows),
|
||||
// - pointer to the value,
|
||||
// - byte length of the value.
|
||||
//
|
||||
// The information about nulls (validity bitmap) is not used in this call and
|
||||
// has to be processed separately.
|
||||
//
|
||||
template <class PROCESS_VALUE_FN>
|
||||
static void Visit(const RowTableImpl& rows, int column_id, int num_rows,
|
||||
const uint32_t* row_ids, PROCESS_VALUE_FN process_value_fn);
|
||||
|
||||
// The supplied lambda will be called for each row in the given list of rows.
|
||||
// The arguments given to it will be:
|
||||
// - index of a row (within the set of selected rows),
|
||||
// - byte 0xFF if the null is set for the row or 0x00 otherwise.
|
||||
//
|
||||
template <class PROCESS_VALUE_FN>
|
||||
static void VisitNulls(const RowTableImpl& rows, int column_id, int num_rows,
|
||||
const uint32_t* row_ids, PROCESS_VALUE_FN process_value_fn);
|
||||
|
||||
private:
|
||||
#if defined(ARROW_HAVE_AVX2)
|
||||
// This is equivalent to Visit method, but processing 8 rows at a time in a
|
||||
// loop.
|
||||
// Returns the number of processed rows, which may be less than requested (up
|
||||
// to 7 rows at the end may be skipped).
|
||||
//
|
||||
template <class PROCESS_8_VALUES_FN>
|
||||
static int Visit_avx2(const RowTableImpl& rows, int column_id, int num_rows,
|
||||
const uint32_t* row_ids, PROCESS_8_VALUES_FN process_8_values_fn);
|
||||
|
||||
// This is equivalent to VisitNulls method, but processing 8 rows at a time in
|
||||
// a loop. Returns the number of processed rows, which may be less than
|
||||
// requested (up to 7 rows at the end may be skipped).
|
||||
//
|
||||
template <class PROCESS_8_VALUES_FN>
|
||||
static int VisitNulls_avx2(const RowTableImpl& rows, int column_id, int num_rows,
|
||||
const uint32_t* row_ids,
|
||||
PROCESS_8_VALUES_FN process_8_values_fn);
|
||||
#endif
|
||||
};
|
||||
|
||||
// Write operations (appending batch rows) must not be called by more than one
|
||||
// thread at the same time.
|
||||
//
|
||||
// Read operations (row comparison, column decoding)
|
||||
// can be called by multiple threads concurrently.
|
||||
//
|
||||
struct RowArray {
|
||||
RowArray() : is_initialized_(false) {}
|
||||
|
||||
Status InitIfNeeded(MemoryPool* pool, const ExecBatch& batch);
|
||||
Status InitIfNeeded(MemoryPool* pool, const RowTableMetadata& row_metadata);
|
||||
|
||||
Status AppendBatchSelection(MemoryPool* pool, const ExecBatch& batch, int begin_row_id,
|
||||
int end_row_id, int num_row_ids, const uint16_t* row_ids,
|
||||
std::vector<KeyColumnArray>& temp_column_arrays);
|
||||
|
||||
// This can only be called for a minibatch.
|
||||
//
|
||||
void Compare(const ExecBatch& batch, int begin_row_id, int end_row_id, int num_selected,
|
||||
const uint16_t* batch_selection_maybe_null, const uint32_t* array_row_ids,
|
||||
uint32_t* out_num_not_equal, uint16_t* out_not_equal_selection,
|
||||
int64_t hardware_flags, util::TempVectorStack* temp_stack,
|
||||
std::vector<KeyColumnArray>& temp_column_arrays,
|
||||
uint8_t* out_match_bitvector_maybe_null = NULLPTR);
|
||||
|
||||
// TODO: add AVX2 version
|
||||
//
|
||||
Status DecodeSelected(ResizableArrayData* target, int column_id, int num_rows_to_append,
|
||||
const uint32_t* row_ids, MemoryPool* pool) const;
|
||||
|
||||
void DebugPrintToFile(const char* filename, bool print_sorted) const;
|
||||
|
||||
int64_t num_rows() const { return is_initialized_ ? rows_.length() : 0; }
|
||||
|
||||
bool is_initialized_;
|
||||
RowTableEncoder encoder_;
|
||||
RowTableImpl rows_;
|
||||
RowTableImpl rows_temp_;
|
||||
};
|
||||
|
||||
// Implements concatenating multiple row arrays into a single one, using
|
||||
// potentially multiple threads, each processing a single input row array.
|
||||
//
|
||||
class RowArrayMerge {
|
||||
public:
|
||||
// Calculate total number of rows and size in bytes for merged sequence of
|
||||
// rows and allocate memory for it.
|
||||
//
|
||||
// If the rows are of varying length, initialize in the offset array the first
|
||||
// entry for the write area for each input row array. Leave all other
|
||||
// offsets and buffers uninitialized.
|
||||
//
|
||||
// All input sources must be initialized, but they can contain zero rows.
|
||||
//
|
||||
// Output in vector the first target row id for each source (exclusive
|
||||
// cummulative sum of number of rows in sources). This output is optional,
|
||||
// caller can pass in nullptr to indicate that it is not needed.
|
||||
//
|
||||
static Status PrepareForMerge(RowArray* target, const std::vector<RowArray*>& sources,
|
||||
std::vector<int64_t>* first_target_row_id,
|
||||
MemoryPool* pool);
|
||||
|
||||
// Copy rows from source array to target array.
|
||||
// Both arrays must have the same row metadata.
|
||||
// Target array must already have the memory reserved in all internal buffers
|
||||
// for the copy of the rows.
|
||||
//
|
||||
// Copy of the rows will occupy the same amount of space in the target array
|
||||
// buffers as in the source array, but in the target array we pick at what row
|
||||
// position and offset we start writing.
|
||||
//
|
||||
// Optionally, the rows may be reordered during copy according to the
|
||||
// provided permutation, which represents some sorting order of source rows.
|
||||
// Nth element of the permutation array is the source row index for the Nth
|
||||
// row written into target array. If permutation is missing (null), then the
|
||||
// order of source rows will remain unchanged.
|
||||
//
|
||||
// In case of varying length rows, we purposefully skip outputting of N+1 (one
|
||||
// after last) offset, to allow concurrent copies of rows done to adjacent
|
||||
// ranges in the target array. This offset should already contain the right
|
||||
// value after calling the method preparing target array for merge (which
|
||||
// initializes boundary offsets for target row ranges for each source).
|
||||
//
|
||||
static void MergeSingle(RowArray* target, const RowArray& source,
|
||||
int64_t first_target_row_id,
|
||||
const int64_t* source_rows_permutation);
|
||||
|
||||
private:
|
||||
// Copy rows from source array to a region of the target array.
|
||||
// This implementation is for fixed length rows.
|
||||
// Null information needs to be handled separately.
|
||||
//
|
||||
static void CopyFixedLength(RowTableImpl* target, const RowTableImpl& source,
|
||||
int64_t first_target_row_id,
|
||||
const int64_t* source_rows_permutation);
|
||||
|
||||
// Copy rows from source array to a region of the target array.
|
||||
// This implementation is for varying length rows.
|
||||
// Null information needs to be handled separately.
|
||||
//
|
||||
static void CopyVaryingLength(RowTableImpl* target, const RowTableImpl& source,
|
||||
int64_t first_target_row_id,
|
||||
int64_t first_target_row_offset,
|
||||
const int64_t* source_rows_permutation);
|
||||
|
||||
// Copy null information from rows from source array to a region of the target
|
||||
// array.
|
||||
//
|
||||
static void CopyNulls(RowTableImpl* target, const RowTableImpl& source,
|
||||
int64_t first_target_row_id,
|
||||
const int64_t* source_rows_permutation);
|
||||
};
|
||||
|
||||
// Implements merging of multiple SwissTables into a single one, using
|
||||
// potentially multiple threads, each processing a single input source.
|
||||
//
|
||||
// Each source should correspond to a range of original hashes.
|
||||
// A row belongs to a source with index determined by K highest bits of
|
||||
// original hash. That means that the number of sources must be a power of 2.
|
||||
//
|
||||
// We assume that the hash values used and stored inside source tables
|
||||
// have K highest bits removed from the original hash in order to avoid huge
|
||||
// number of hash collisions that would occur otherwise.
|
||||
// These bits will be reinserted back (original hashes will be used) when
|
||||
// merging into target.
|
||||
//
|
||||
class SwissTableMerge {
|
||||
public:
|
||||
// Calculate total number of blocks for merged table.
|
||||
// Allocate buffers sized accordingly and initialize empty target table.
|
||||
//
|
||||
// All input sources must be initialized, but they can be empty.
|
||||
//
|
||||
// Output in a vector the first target group id for each source (exclusive
|
||||
// cummulative sum of number of groups in sources). This output is optional,
|
||||
// caller can pass in nullptr to indicate that it is not needed.
|
||||
//
|
||||
static Status PrepareForMerge(SwissTable* target,
|
||||
const std::vector<SwissTable*>& sources,
|
||||
std::vector<uint32_t>* first_target_group_id,
|
||||
MemoryPool* pool);
|
||||
|
||||
// Copy all entries from source to a range of blocks (partition) of target.
|
||||
//
|
||||
// During copy, adjust group ids from source by adding provided base id.
|
||||
//
|
||||
// Skip entries from source that would cross partition boundaries (range of
|
||||
// blocks) when inserted into target. Save their data in output vector for
|
||||
// processing later. We postpone inserting these overflow entries in order to
|
||||
// allow concurrent processing of all partitions. Overflow entries will be
|
||||
// handled by a single-thread afterwards.
|
||||
//
|
||||
static void MergePartition(SwissTable* target, const SwissTable* source,
|
||||
uint32_t partition_id, int num_partition_bits,
|
||||
uint32_t base_group_id,
|
||||
std::vector<uint32_t>* overflow_group_ids,
|
||||
std::vector<uint32_t>* overflow_hashes);
|
||||
|
||||
// Single-threaded processing of remaining groups, that could not be
|
||||
// inserted in partition merge phase
|
||||
// (due to entries from one partition spilling over due to full blocks into
|
||||
// the next partition).
|
||||
//
|
||||
static void InsertNewGroups(SwissTable* target, const std::vector<uint32_t>& group_ids,
|
||||
const std::vector<uint32_t>& hashes);
|
||||
|
||||
private:
|
||||
// Insert a new group id.
|
||||
//
|
||||
// Assumes that there are enough slots in the target
|
||||
// and there is no need to resize it.
|
||||
//
|
||||
// Max block id can be provided, in which case the search for an empty slot to
|
||||
// insert new entry to will stop after visiting that block.
|
||||
//
|
||||
// Max block id value greater or equal to the number of blocks guarantees that
|
||||
// the search will not be stopped.
|
||||
//
|
||||
static inline bool InsertNewGroup(SwissTable* target, uint64_t group_id, uint32_t hash,
|
||||
int64_t max_block_id);
|
||||
};
|
||||
|
||||
struct SwissTableWithKeys {
|
||||
struct Input {
|
||||
Input(const ExecBatch* in_batch, int in_batch_start_row, int in_batch_end_row,
|
||||
util::TempVectorStack* in_temp_stack,
|
||||
std::vector<KeyColumnArray>* in_temp_column_arrays);
|
||||
|
||||
Input(const ExecBatch* in_batch, util::TempVectorStack* in_temp_stack,
|
||||
std::vector<KeyColumnArray>* in_temp_column_arrays);
|
||||
|
||||
Input(const ExecBatch* in_batch, int in_num_selected, const uint16_t* in_selection,
|
||||
util::TempVectorStack* in_temp_stack,
|
||||
std::vector<KeyColumnArray>* in_temp_column_arrays,
|
||||
std::vector<uint32_t>* in_temp_group_ids);
|
||||
|
||||
Input(const Input& base, int num_rows_to_skip, int num_rows_to_include);
|
||||
|
||||
const ExecBatch* batch;
|
||||
// Window of the batch to operate on.
|
||||
// The window information is only used if row selection is null.
|
||||
//
|
||||
int batch_start_row;
|
||||
int batch_end_row;
|
||||
// Optional selection.
|
||||
// Used instead of window of the batch if not null.
|
||||
//
|
||||
int num_selected;
|
||||
const uint16_t* selection_maybe_null;
|
||||
// Thread specific scratch buffers for storing temporary data.
|
||||
//
|
||||
util::TempVectorStack* temp_stack;
|
||||
std::vector<KeyColumnArray>* temp_column_arrays;
|
||||
std::vector<uint32_t>* temp_group_ids;
|
||||
};
|
||||
|
||||
Status Init(int64_t hardware_flags, MemoryPool* pool);
|
||||
|
||||
void InitCallbacks();
|
||||
|
||||
static void Hash(Input* input, uint32_t* hashes, int64_t hardware_flags);
|
||||
|
||||
// If input uses selection, then hashes array must have one element for every
|
||||
// row in the whole (unfiltered and not spliced) input exec batch. Otherwise,
|
||||
// there must be one element in hashes array for every value in the window of
|
||||
// the exec batch specified by input.
|
||||
//
|
||||
// Output arrays will contain one element for every selected batch row in
|
||||
// input (selected either by selection vector if provided or input window
|
||||
// otherwise).
|
||||
//
|
||||
void MapReadOnly(Input* input, const uint32_t* hashes, uint8_t* match_bitvector,
|
||||
uint32_t* key_ids);
|
||||
Status MapWithInserts(Input* input, const uint32_t* hashes, uint32_t* key_ids);
|
||||
|
||||
SwissTable* swiss_table() { return &swiss_table_; }
|
||||
const SwissTable* swiss_table() const { return &swiss_table_; }
|
||||
RowArray* keys() { return &keys_; }
|
||||
const RowArray* keys() const { return &keys_; }
|
||||
|
||||
private:
|
||||
void EqualCallback(int num_keys, const uint16_t* selection_maybe_null,
|
||||
const uint32_t* group_ids, uint32_t* out_num_keys_mismatch,
|
||||
uint16_t* out_selection_mismatch, void* callback_ctx);
|
||||
Status AppendCallback(int num_keys, const uint16_t* selection, void* callback_ctx);
|
||||
Status Map(Input* input, bool insert_missing, const uint32_t* hashes,
|
||||
uint8_t* match_bitvector_maybe_null, uint32_t* key_ids);
|
||||
|
||||
SwissTable::EqualImpl equal_impl_;
|
||||
SwissTable::AppendImpl append_impl_;
|
||||
|
||||
SwissTable swiss_table_;
|
||||
RowArray keys_;
|
||||
};
|
||||
|
||||
// Enhances SwissTableWithKeys with the following structures used by hash join:
|
||||
// - storage of payloads (that unlike keys do not have to be unique)
|
||||
// - mapping from a key to all inserted payloads corresponding to it (we can
|
||||
// store multiple rows corresponding to a single key)
|
||||
// - bit-vectors for keeping track of whether each payload had a match during
|
||||
// evaluation of join.
|
||||
//
|
||||
class SwissTableForJoin {
|
||||
friend class SwissTableForJoinBuild;
|
||||
|
||||
public:
|
||||
void UpdateHasMatchForKeys(int64_t thread_id, int num_rows, const uint32_t* key_ids);
|
||||
void MergeHasMatch();
|
||||
|
||||
const SwissTableWithKeys* keys() const { return &map_; }
|
||||
SwissTableWithKeys* keys() { return &map_; }
|
||||
const RowArray* payloads() const { return no_payload_columns_ ? NULLPTR : &payloads_; }
|
||||
const uint32_t* key_to_payload() const {
|
||||
return no_duplicate_keys_ ? NULLPTR : row_offset_for_key_.data();
|
||||
}
|
||||
const uint8_t* has_match() const {
|
||||
return has_match_.empty() ? NULLPTR : has_match_.data();
|
||||
}
|
||||
int64_t num_keys() const { return map_.keys()->num_rows(); }
|
||||
int64_t num_rows() const {
|
||||
return no_duplicate_keys_ ? num_keys() : row_offset_for_key_[num_keys()];
|
||||
}
|
||||
|
||||
uint32_t payload_id_to_key_id(uint32_t payload_id) const;
|
||||
// Input payload ids must form an increasing sequence.
|
||||
//
|
||||
void payload_ids_to_key_ids(int num_rows, const uint32_t* payload_ids,
|
||||
uint32_t* key_ids) const;
|
||||
|
||||
private:
|
||||
uint8_t* local_has_match(int64_t thread_id);
|
||||
|
||||
// Degree of parallelism (number of threads)
|
||||
int dop_;
|
||||
|
||||
struct ThreadLocalState {
|
||||
std::vector<uint8_t> has_match;
|
||||
};
|
||||
std::vector<ThreadLocalState> local_states_;
|
||||
std::vector<uint8_t> has_match_;
|
||||
|
||||
SwissTableWithKeys map_;
|
||||
|
||||
bool no_duplicate_keys_;
|
||||
// Not used if no_duplicate_keys_ is true.
|
||||
std::vector<uint32_t> row_offset_for_key_;
|
||||
|
||||
bool no_payload_columns_;
|
||||
// Not used if no_payload_columns_ is true.
|
||||
RowArray payloads_;
|
||||
};
|
||||
|
||||
// Implements parallel build process for hash table for join from a sequence of
|
||||
// exec batches with input rows.
|
||||
//
|
||||
class SwissTableForJoinBuild {
|
||||
public:
|
||||
Status Init(SwissTableForJoin* target, int dop, int64_t num_rows,
|
||||
bool reject_duplicate_keys, bool no_payload,
|
||||
const std::vector<KeyColumnMetadata>& key_types,
|
||||
const std::vector<KeyColumnMetadata>& payload_types, MemoryPool* pool,
|
||||
int64_t hardware_flags);
|
||||
|
||||
// In the first phase of parallel hash table build, threads pick unprocessed
|
||||
// exec batches, partition the rows based on hash, and update all of the
|
||||
// partitions with information related to that batch of rows.
|
||||
//
|
||||
Status PushNextBatch(int64_t thread_id, const ExecBatch& key_batch,
|
||||
const ExecBatch* payload_batch_maybe_null,
|
||||
util::TempVectorStack* temp_stack);
|
||||
|
||||
// Allocate memory and initialize counters required for parallel merging of
|
||||
// hash table partitions.
|
||||
// Single-threaded.
|
||||
//
|
||||
Status PreparePrtnMerge();
|
||||
|
||||
// Second phase of parallel hash table build.
|
||||
// Each partition can be processed by a different thread.
|
||||
// Parallel step.
|
||||
//
|
||||
void PrtnMerge(int prtn_id);
|
||||
|
||||
// Single-threaded processing of the rows that have been skipped during
|
||||
// parallel merging phase, due to hash table search resulting in crossing
|
||||
// partition boundaries.
|
||||
//
|
||||
void FinishPrtnMerge(util::TempVectorStack* temp_stack);
|
||||
|
||||
// The number of partitions is the number of parallel tasks to execute during
|
||||
// the final phase of hash table build process.
|
||||
//
|
||||
int num_prtns() const { return num_prtns_; }
|
||||
|
||||
bool no_payload() const { return no_payload_; }
|
||||
|
||||
private:
|
||||
void InitRowArray();
|
||||
Status ProcessPartition(int64_t thread_id, const ExecBatch& key_batch,
|
||||
const ExecBatch* payload_batch_maybe_null,
|
||||
util::TempVectorStack* temp_stack, int prtn_id);
|
||||
|
||||
SwissTableForJoin* target_;
|
||||
// DOP stands for Degree Of Parallelism - the maximum number of participating
|
||||
// threads.
|
||||
//
|
||||
int dop_;
|
||||
// Partition is a unit of parallel work.
|
||||
//
|
||||
// There must be power of 2 partitions (bits of hash will be used to
|
||||
// identify them).
|
||||
//
|
||||
// Pick number of partitions at least equal to the number of threads (degree
|
||||
// of parallelism).
|
||||
//
|
||||
int log_num_prtns_;
|
||||
int num_prtns_;
|
||||
int64_t num_rows_;
|
||||
// Left-semi and left-anti-semi joins do not need more than one copy of the
|
||||
// same key in the hash table.
|
||||
// This flag, if set, will result in filtering rows with duplicate keys before
|
||||
// inserting them into hash table.
|
||||
//
|
||||
// Since left-semi and left-anti-semi joins also do not need payload, when
|
||||
// this flag is set there also will not be any processing of payload.
|
||||
//
|
||||
bool reject_duplicate_keys_;
|
||||
// This flag, when set, will result in skipping any processing of the payload.
|
||||
//
|
||||
// The flag for rejecting duplicate keys (which should be set for left-semi
|
||||
// and left-anti joins), when set, will force this flag to also be set, but
|
||||
// other join flavors may set it to true as well if no payload columns are
|
||||
// needed for join output.
|
||||
//
|
||||
bool no_payload_;
|
||||
MemoryPool* pool_;
|
||||
int64_t hardware_flags_;
|
||||
|
||||
// One per partition.
|
||||
//
|
||||
struct PartitionState {
|
||||
SwissTableWithKeys keys;
|
||||
RowArray payloads;
|
||||
std::vector<uint32_t> key_ids;
|
||||
std::vector<uint32_t> overflow_key_ids;
|
||||
std::vector<uint32_t> overflow_hashes;
|
||||
};
|
||||
|
||||
// One per thread.
|
||||
//
|
||||
// Buffers for storing temporary intermediate results when processing input
|
||||
// batches.
|
||||
//
|
||||
struct ThreadState {
|
||||
std::vector<uint32_t> batch_hashes;
|
||||
std::vector<uint16_t> batch_prtn_ranges;
|
||||
std::vector<uint16_t> batch_prtn_row_ids;
|
||||
std::vector<int> temp_prtn_ids;
|
||||
std::vector<uint32_t> temp_group_ids;
|
||||
std::vector<KeyColumnArray> temp_column_arrays;
|
||||
};
|
||||
|
||||
std::vector<PartitionState> prtn_states_;
|
||||
std::vector<ThreadState> thread_states_;
|
||||
PartitionLocks prtn_locks_;
|
||||
|
||||
std::vector<int64_t> partition_keys_first_row_id_;
|
||||
std::vector<int64_t> partition_payloads_first_row_id_;
|
||||
};
|
||||
|
||||
class JoinResultMaterialize {
|
||||
public:
|
||||
void Init(MemoryPool* pool, const HashJoinProjectionMaps* probe_schemas,
|
||||
const HashJoinProjectionMaps* build_schemas);
|
||||
|
||||
void SetBuildSide(const RowArray* build_keys, const RowArray* build_payloads,
|
||||
bool payload_id_same_as_key_id);
|
||||
|
||||
// Input probe side batches should contain all key columns followed by all
|
||||
// payload columns.
|
||||
//
|
||||
Status AppendProbeOnly(const ExecBatch& key_and_payload, int num_rows_to_append,
|
||||
const uint16_t* row_ids, int* num_rows_appended);
|
||||
|
||||
Status AppendBuildOnly(int num_rows_to_append, const uint32_t* key_ids,
|
||||
const uint32_t* payload_ids, int* num_rows_appended);
|
||||
|
||||
Status Append(const ExecBatch& key_and_payload, int num_rows_to_append,
|
||||
const uint16_t* row_ids, const uint32_t* key_ids,
|
||||
const uint32_t* payload_ids, int* num_rows_appended);
|
||||
|
||||
// Should only be called if num_rows() returns non-zero.
|
||||
//
|
||||
Status Flush(ExecBatch* out);
|
||||
|
||||
int num_rows() const { return num_rows_; }
|
||||
|
||||
template <class APPEND_ROWS_FN, class OUTPUT_BATCH_FN>
|
||||
Status AppendAndOutput(int num_rows_to_append, const APPEND_ROWS_FN& append_rows_fn,
|
||||
const OUTPUT_BATCH_FN& output_batch_fn) {
|
||||
int offset = 0;
|
||||
for (;;) {
|
||||
int num_rows_appended = 0;
|
||||
ARROW_RETURN_NOT_OK(append_rows_fn(num_rows_to_append, offset, &num_rows_appended));
|
||||
if (num_rows_appended < num_rows_to_append) {
|
||||
ExecBatch batch;
|
||||
ARROW_RETURN_NOT_OK(Flush(&batch));
|
||||
output_batch_fn(batch);
|
||||
num_rows_to_append -= num_rows_appended;
|
||||
offset += num_rows_appended;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
template <class OUTPUT_BATCH_FN>
|
||||
Status AppendProbeOnly(const ExecBatch& key_and_payload, int num_rows_to_append,
|
||||
const uint16_t* row_ids, OUTPUT_BATCH_FN output_batch_fn) {
|
||||
return AppendAndOutput(
|
||||
num_rows_to_append,
|
||||
[&](int num_rows_to_append_left, int offset, int* num_rows_appended) {
|
||||
return AppendProbeOnly(key_and_payload, num_rows_to_append_left,
|
||||
row_ids + offset, num_rows_appended);
|
||||
},
|
||||
output_batch_fn);
|
||||
}
|
||||
|
||||
template <class OUTPUT_BATCH_FN>
|
||||
Status AppendBuildOnly(int num_rows_to_append, const uint32_t* key_ids,
|
||||
const uint32_t* payload_ids, OUTPUT_BATCH_FN output_batch_fn) {
|
||||
return AppendAndOutput(
|
||||
num_rows_to_append,
|
||||
[&](int num_rows_to_append_left, int offset, int* num_rows_appended) {
|
||||
return AppendBuildOnly(
|
||||
num_rows_to_append_left, key_ids ? key_ids + offset : NULLPTR,
|
||||
payload_ids ? payload_ids + offset : NULLPTR, num_rows_appended);
|
||||
},
|
||||
output_batch_fn);
|
||||
}
|
||||
|
||||
template <class OUTPUT_BATCH_FN>
|
||||
Status Append(const ExecBatch& key_and_payload, int num_rows_to_append,
|
||||
const uint16_t* row_ids, const uint32_t* key_ids,
|
||||
const uint32_t* payload_ids, OUTPUT_BATCH_FN output_batch_fn) {
|
||||
return AppendAndOutput(
|
||||
num_rows_to_append,
|
||||
[&](int num_rows_to_append_left, int offset, int* num_rows_appended) {
|
||||
return Append(key_and_payload, num_rows_to_append_left,
|
||||
row_ids ? row_ids + offset : NULLPTR,
|
||||
key_ids ? key_ids + offset : NULLPTR,
|
||||
payload_ids ? payload_ids + offset : NULLPTR, num_rows_appended);
|
||||
},
|
||||
output_batch_fn);
|
||||
}
|
||||
|
||||
template <class OUTPUT_BATCH_FN>
|
||||
Status Flush(OUTPUT_BATCH_FN output_batch_fn) {
|
||||
if (num_rows_ > 0) {
|
||||
ExecBatch batch({}, num_rows_);
|
||||
ARROW_RETURN_NOT_OK(Flush(&batch));
|
||||
output_batch_fn(std::move(batch));
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
int64_t num_produced_batches() const { return num_produced_batches_; }
|
||||
|
||||
private:
|
||||
bool HasProbeOutput() const;
|
||||
bool HasBuildKeyOutput() const;
|
||||
bool HasBuildPayloadOutput() const;
|
||||
bool NeedsKeyId() const;
|
||||
bool NeedsPayloadId() const;
|
||||
Result<std::shared_ptr<ArrayData>> FlushBuildColumn(
|
||||
const std::shared_ptr<DataType>& data_type, const RowArray* row_array,
|
||||
int column_id, uint32_t* row_ids);
|
||||
|
||||
MemoryPool* pool_;
|
||||
const HashJoinProjectionMaps* probe_schemas_;
|
||||
const HashJoinProjectionMaps* build_schemas_;
|
||||
const RowArray* build_keys_;
|
||||
// Payload array pointer may be left as null, if no payload columns are
|
||||
// in the output column set.
|
||||
//
|
||||
const RowArray* build_payloads_;
|
||||
// If true, then ignore updating payload ids and use key ids instead when
|
||||
// reading.
|
||||
//
|
||||
bool payload_id_same_as_key_id_;
|
||||
std::vector<int> probe_output_to_key_and_payload_;
|
||||
|
||||
// Number of accumulated rows (since last flush)
|
||||
//
|
||||
int num_rows_;
|
||||
// Accumulated output columns from probe side batches.
|
||||
//
|
||||
ExecBatchBuilder batch_builder_;
|
||||
// Accumulated build side row references.
|
||||
//
|
||||
std::vector<uint32_t> key_ids_;
|
||||
std::vector<uint32_t> payload_ids_;
|
||||
// Information about ranges of rows from build side,
|
||||
// that in the accumulated materialized results have all fields set to null.
|
||||
//
|
||||
// Each pair contains index of the first output row in the range and the
|
||||
// length of the range. Only rows outside of these ranges have data present in
|
||||
// the key_ids_ and payload_ids_ arrays.
|
||||
//
|
||||
std::vector<std::pair<int, int>> null_ranges_;
|
||||
|
||||
int64_t num_produced_batches_;
|
||||
};
|
||||
|
||||
// When comparing two join key values to check if they are equal, hash join allows to
|
||||
// chose (even separately for each field within the join key) whether two null values are
|
||||
// considered to be equal (IS comparison) or not (EQ comparison). For EQ comparison we
|
||||
// need to filter rows with nulls in keys outside of hash table lookups, since hash table
|
||||
// implementation always treats two nulls as equal (like IS comparison).
|
||||
//
|
||||
// Implements evaluating filter bit vector eliminating rows that do not have
|
||||
// join matches due to nulls in key columns.
|
||||
//
|
||||
class JoinNullFilter {
|
||||
public:
|
||||
// The batch for which the filter bit vector will be computed
|
||||
// needs to start with all key columns but it may contain more columns
|
||||
// (payload) following them.
|
||||
//
|
||||
static void Filter(const ExecBatch& key_batch, int batch_start_row, int num_batch_rows,
|
||||
const std::vector<JoinKeyCmp>& cmp, bool* all_valid,
|
||||
bool and_with_input, uint8_t* out_bit_vector);
|
||||
};
|
||||
|
||||
// A helper class that takes hash table lookup results for a range of rows in
|
||||
// input batch, that is:
|
||||
// - bit vector marking whether there was a key match in the hash table
|
||||
// - key id if there was a match
|
||||
// - mapping from key id to a range of payload ids associated with that key
|
||||
// (representing multiple matching rows in a hash table for a single row in an
|
||||
// input batch), and iterates output batches of limited size containing tuples
|
||||
// describing all matching pairs of rows:
|
||||
// - input batch row id (only rows that have matches in the hash table are
|
||||
// included)
|
||||
// - key id for a match
|
||||
// - payload id (different one for each matching row in the hash table)
|
||||
//
|
||||
class JoinMatchIterator {
|
||||
public:
|
||||
void SetLookupResult(int num_batch_rows, int start_batch_row,
|
||||
const uint8_t* batch_has_match, const uint32_t* key_ids,
|
||||
bool no_duplicate_keys, const uint32_t* key_to_payload);
|
||||
bool GetNextBatch(int num_rows_max, int* out_num_rows, uint16_t* batch_row_ids,
|
||||
uint32_t* key_ids, uint32_t* payload_ids);
|
||||
|
||||
private:
|
||||
int num_batch_rows_;
|
||||
int start_batch_row_;
|
||||
const uint8_t* batch_has_match_;
|
||||
const uint32_t* key_ids_;
|
||||
|
||||
bool no_duplicate_keys_;
|
||||
const uint32_t* key_to_payload_;
|
||||
|
||||
// Index of the first not fully processed input row, or number of rows if all
|
||||
// have been processed. May be pointing to a row with no matches.
|
||||
//
|
||||
int current_row_;
|
||||
// Index of the first unprocessed match for the input row. May be zero if the
|
||||
// row has no matches.
|
||||
//
|
||||
int current_match_for_row_;
|
||||
};
|
||||
|
||||
// Implements entire processing of a probe side exec batch,
|
||||
// provided the join hash table is already built and available.
|
||||
//
|
||||
class JoinProbeProcessor {
|
||||
public:
|
||||
using OutputBatchFn = std::function<void(int64_t, ExecBatch)>;
|
||||
|
||||
void Init(int num_key_columns, JoinType join_type, SwissTableForJoin* hash_table,
|
||||
std::vector<JoinResultMaterialize*> materialize,
|
||||
const std::vector<JoinKeyCmp>* cmp, OutputBatchFn output_batch_fn);
|
||||
Status OnNextBatch(int64_t thread_id, const ExecBatch& keypayload_batch,
|
||||
util::TempVectorStack* temp_stack,
|
||||
std::vector<KeyColumnArray>* temp_column_arrays);
|
||||
|
||||
// Must be called by a single-thread having exclusive access to the instance
|
||||
// of this class. The caller is responsible for ensuring that.
|
||||
//
|
||||
Status OnFinished();
|
||||
|
||||
private:
|
||||
int num_key_columns_;
|
||||
JoinType join_type_;
|
||||
|
||||
SwissTableForJoin* hash_table_;
|
||||
// One element per thread
|
||||
//
|
||||
std::vector<JoinResultMaterialize*> materialize_;
|
||||
const std::vector<JoinKeyCmp>* cmp_;
|
||||
OutputBatchFn output_batch_fn_;
|
||||
};
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,100 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/util/logging.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace compute {
|
||||
|
||||
// Atomic value surrounded by padding bytes to avoid cache line invalidation
|
||||
// whenever it is modified by a concurrent thread on a different CPU core.
|
||||
//
|
||||
template <typename T>
|
||||
class AtomicWithPadding {
|
||||
private:
|
||||
static constexpr int kCacheLineSize = 64;
|
||||
uint8_t padding_before[kCacheLineSize];
|
||||
|
||||
public:
|
||||
std::atomic<T> value;
|
||||
|
||||
private:
|
||||
uint8_t padding_after[kCacheLineSize];
|
||||
};
|
||||
|
||||
// Used for asynchronous execution of operations that can be broken into
|
||||
// a fixed number of symmetric tasks that can be executed concurrently.
|
||||
//
|
||||
// Implements priorities between multiple such operations, called task groups.
|
||||
//
|
||||
// Allows to specify the maximum number of in-flight tasks at any moment.
|
||||
//
|
||||
// Also allows for executing next pending tasks immediately using a caller thread.
|
||||
//
|
||||
class ARROW_EXPORT TaskScheduler {
|
||||
public:
|
||||
using TaskImpl = std::function<Status(size_t, int64_t)>;
|
||||
using TaskGroupContinuationImpl = std::function<Status(size_t)>;
|
||||
using ScheduleImpl = std::function<Status(TaskGroupContinuationImpl)>;
|
||||
using AbortContinuationImpl = std::function<void()>;
|
||||
|
||||
virtual ~TaskScheduler() = default;
|
||||
|
||||
// Order in which task groups are registered represents priorities of their tasks
|
||||
// (the first group has the highest priority).
|
||||
//
|
||||
// Returns task group identifier that is used to request operations on the task group.
|
||||
virtual int RegisterTaskGroup(TaskImpl task_impl,
|
||||
TaskGroupContinuationImpl cont_impl) = 0;
|
||||
|
||||
virtual void RegisterEnd() = 0;
|
||||
|
||||
// total_num_tasks may be zero, in which case task group continuation will be executed
|
||||
// immediately
|
||||
virtual Status StartTaskGroup(size_t thread_id, int group_id,
|
||||
int64_t total_num_tasks) = 0;
|
||||
|
||||
// Execute given number of tasks immediately using caller thread
|
||||
virtual Status ExecuteMore(size_t thread_id, int num_tasks_to_execute,
|
||||
bool execute_all) = 0;
|
||||
|
||||
// Begin scheduling tasks using provided callback and
|
||||
// the limit on the number of in-flight tasks at any moment.
|
||||
//
|
||||
// Scheduling will continue as long as there are waiting tasks.
|
||||
//
|
||||
// It will automatically resume whenever new task group gets started.
|
||||
virtual Status StartScheduling(size_t thread_id, ScheduleImpl schedule_impl,
|
||||
int num_concurrent_tasks, bool use_sync_execution) = 0;
|
||||
|
||||
// Abort scheduling and execution.
|
||||
// Used in case of being notified about unrecoverable error for the entire query.
|
||||
virtual void Abort(AbortContinuationImpl impl) = 0;
|
||||
|
||||
static std::unique_ptr<TaskScheduler> Make();
|
||||
};
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,212 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <arrow/testing/gtest_util.h>
|
||||
#include <arrow/util/vector.h>
|
||||
|
||||
#include <functional>
|
||||
#include <random>
|
||||
#include <string>
|
||||
#include <string_view>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/compute/exec.h"
|
||||
#include "arrow/compute/exec/exec_plan.h"
|
||||
#include "arrow/compute/kernel.h"
|
||||
#include "arrow/testing/visibility.h"
|
||||
#include "arrow/util/async_generator.h"
|
||||
#include "arrow/util/pcg_random.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace compute {
|
||||
|
||||
using StartProducingFunc = std::function<Status(ExecNode*)>;
|
||||
using StopProducingFunc = std::function<void(ExecNode*)>;
|
||||
|
||||
// Make a dummy node that has no execution behaviour
|
||||
ARROW_TESTING_EXPORT
|
||||
ExecNode* MakeDummyNode(ExecPlan* plan, std::string label, std::vector<ExecNode*> inputs,
|
||||
int num_outputs, StartProducingFunc = {}, StopProducingFunc = {});
|
||||
|
||||
ARROW_TESTING_EXPORT
|
||||
ExecBatch ExecBatchFromJSON(const std::vector<TypeHolder>& types, std::string_view json);
|
||||
|
||||
/// \brief Shape qualifier for value types. In certain instances
|
||||
/// (e.g. "map_lookup" kernel), an argument may only be a scalar, where in
|
||||
/// other kernels arguments can be arrays or scalars
|
||||
enum class ArgShape { ANY, ARRAY, SCALAR };
|
||||
|
||||
ARROW_TESTING_EXPORT
|
||||
ExecBatch ExecBatchFromJSON(const std::vector<TypeHolder>& types,
|
||||
const std::vector<ArgShape>& shapes, std::string_view json);
|
||||
|
||||
struct BatchesWithSchema {
|
||||
std::vector<ExecBatch> batches;
|
||||
std::shared_ptr<Schema> schema;
|
||||
|
||||
AsyncGenerator<std::optional<ExecBatch>> gen(bool parallel, bool slow) const {
|
||||
auto opt_batches = ::arrow::internal::MapVector(
|
||||
[](ExecBatch batch) { return std::make_optional(std::move(batch)); }, batches);
|
||||
|
||||
AsyncGenerator<std::optional<ExecBatch>> gen;
|
||||
|
||||
if (parallel) {
|
||||
// emulate batches completing initial decode-after-scan on a cpu thread
|
||||
gen = MakeBackgroundGenerator(MakeVectorIterator(std::move(opt_batches)),
|
||||
::arrow::internal::GetCpuThreadPool())
|
||||
.ValueOrDie();
|
||||
|
||||
// ensure that callbacks are not executed immediately on a background thread
|
||||
gen =
|
||||
MakeTransferredGenerator(std::move(gen), ::arrow::internal::GetCpuThreadPool());
|
||||
} else {
|
||||
gen = MakeVectorGenerator(std::move(opt_batches));
|
||||
}
|
||||
|
||||
if (slow) {
|
||||
gen =
|
||||
MakeMappedGenerator(std::move(gen), [](const std::optional<ExecBatch>& batch) {
|
||||
SleepABit();
|
||||
return batch;
|
||||
});
|
||||
}
|
||||
|
||||
return gen;
|
||||
}
|
||||
};
|
||||
|
||||
ARROW_TESTING_EXPORT
|
||||
Future<> StartAndFinish(ExecPlan* plan);
|
||||
|
||||
ARROW_TESTING_EXPORT
|
||||
Future<std::vector<ExecBatch>> StartAndCollect(
|
||||
ExecPlan* plan, AsyncGenerator<std::optional<ExecBatch>> gen);
|
||||
|
||||
ARROW_TESTING_EXPORT
|
||||
BatchesWithSchema MakeBasicBatches();
|
||||
|
||||
ARROW_TESTING_EXPORT
|
||||
BatchesWithSchema MakeNestedBatches();
|
||||
|
||||
ARROW_TESTING_EXPORT
|
||||
BatchesWithSchema MakeRandomBatches(const std::shared_ptr<Schema>& schema,
|
||||
int num_batches = 10, int batch_size = 4,
|
||||
int64_t alignment = kDefaultBufferAlignment,
|
||||
MemoryPool* memory_pool = nullptr);
|
||||
|
||||
ARROW_TESTING_EXPORT
|
||||
BatchesWithSchema MakeBatchesFromString(const std::shared_ptr<Schema>& schema,
|
||||
const std::vector<std::string_view>& json_strings,
|
||||
int multiplicity = 1);
|
||||
|
||||
ARROW_TESTING_EXPORT
|
||||
Result<std::vector<std::shared_ptr<ArrayVector>>> ToArrayVectors(
|
||||
const BatchesWithSchema& batches_with_schema);
|
||||
|
||||
ARROW_TESTING_EXPORT
|
||||
Result<std::vector<std::shared_ptr<ExecBatch>>> ToExecBatches(
|
||||
const BatchesWithSchema& batches);
|
||||
|
||||
ARROW_TESTING_EXPORT
|
||||
Result<std::vector<std::shared_ptr<RecordBatch>>> ToRecordBatches(
|
||||
const BatchesWithSchema& batches);
|
||||
|
||||
ARROW_TESTING_EXPORT
|
||||
Result<std::shared_ptr<RecordBatchReader>> ToRecordBatchReader(
|
||||
const BatchesWithSchema& batches_with_schema);
|
||||
|
||||
ARROW_TESTING_EXPORT
|
||||
Result<std::vector<std::shared_ptr<ArrayVector>>> ToArrayVectors(
|
||||
const BatchesWithSchema& batches_with_schema);
|
||||
|
||||
ARROW_TESTING_EXPORT
|
||||
Result<std::vector<std::shared_ptr<ExecBatch>>> ToExecBatches(
|
||||
const BatchesWithSchema& batches);
|
||||
|
||||
ARROW_TESTING_EXPORT
|
||||
Result<std::vector<std::shared_ptr<RecordBatch>>> ToRecordBatches(
|
||||
const BatchesWithSchema& batches);
|
||||
|
||||
ARROW_TESTING_EXPORT
|
||||
Result<std::shared_ptr<Table>> SortTableOnAllFields(const std::shared_ptr<Table>& tab);
|
||||
|
||||
ARROW_TESTING_EXPORT
|
||||
void AssertTablesEqualIgnoringOrder(const std::shared_ptr<Table>& exp,
|
||||
const std::shared_ptr<Table>& act);
|
||||
|
||||
ARROW_TESTING_EXPORT
|
||||
void AssertExecBatchesEqualIgnoringOrder(const std::shared_ptr<Schema>& schema,
|
||||
const std::vector<ExecBatch>& exp,
|
||||
const std::vector<ExecBatch>& act);
|
||||
|
||||
ARROW_TESTING_EXPORT
|
||||
bool operator==(const Declaration&, const Declaration&);
|
||||
|
||||
ARROW_TESTING_EXPORT
|
||||
void PrintTo(const Declaration& decl, std::ostream* os);
|
||||
|
||||
class Random64Bit {
|
||||
public:
|
||||
explicit Random64Bit(int32_t seed) : rng_(seed) {}
|
||||
uint64_t next() { return dist_(rng_); }
|
||||
template <typename T>
|
||||
inline T from_range(const T& min_val, const T& max_val) {
|
||||
return static_cast<T>(min_val + (next() % (max_val - min_val + 1)));
|
||||
}
|
||||
|
||||
private:
|
||||
random::pcg32_fast rng_;
|
||||
std::uniform_int_distribution<uint64_t> dist_;
|
||||
};
|
||||
|
||||
/// Specify properties of a table to be generated.
|
||||
struct TableGenerationProperties {
|
||||
/// Indicates the amount of time between data points that lie between
|
||||
/// the start and end parameters.
|
||||
int time_frequency;
|
||||
/// The number of additional random columns in the table.
|
||||
int num_columns;
|
||||
/// The number of unique keys in the table.
|
||||
int num_ids;
|
||||
/// Specifies the prefix of each randomly generated column.
|
||||
std::string column_prefix;
|
||||
/// Specifies the minimum value in the randomly generated column(s).
|
||||
int min_column_value;
|
||||
/// Specifies the maximum value in the randomly generated column(s).
|
||||
int max_column_value;
|
||||
/// The random seed the random array generator is given to generate the additional
|
||||
/// columns.
|
||||
int seed;
|
||||
/// Specifies the beginning of 'time' recorded in the table, inclusive.
|
||||
int start;
|
||||
/// Specifies the end of 'time' recorded in the table, inclusive.
|
||||
int end;
|
||||
};
|
||||
|
||||
/// The table generated in accordance to the TableGenerationProperties has the following
|
||||
/// schema: time (int64) id (int32) [properties.column_prefix]{idx} (float64)
|
||||
/// where idx is in [0, properties.num_columns)
|
||||
/// Each id has rows corresponding to a singular data point in the time range (start, end,
|
||||
/// time_frequency). The table is sorted by time.
|
||||
ARROW_TESTING_EXPORT
|
||||
Result<std::shared_ptr<Table>> MakeRandomTimeSeriesTable(
|
||||
const TableGenerationProperties& properties);
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,64 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <optional>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/compute/type_fwd.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/status.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace compute {
|
||||
namespace internal {
|
||||
|
||||
class ARROW_EXPORT TpchGen {
|
||||
public:
|
||||
virtual ~TpchGen() = default;
|
||||
|
||||
/*
|
||||
* \brief Create a factory for nodes that generate TPC-H data
|
||||
*
|
||||
* Note: Individual tables will reference each other. It is important that you only
|
||||
* create a single TpchGen instance for each plan and then you can create nodes for each
|
||||
* table from that single TpchGen instance. Note: Every batch will be scheduled as a new
|
||||
* task using the ExecPlan's scheduler.
|
||||
*/
|
||||
static Result<std::unique_ptr<TpchGen>> Make(
|
||||
ExecPlan* plan, double scale_factor = 1.0, int64_t batch_size = 4096,
|
||||
std::optional<int64_t> seed = std::nullopt);
|
||||
|
||||
// The below methods will create and add an ExecNode to the plan that generates
|
||||
// data for the desired table. If columns is empty, all columns will be generated.
|
||||
// The methods return the added ExecNode, which should be used for inputs.
|
||||
virtual Result<ExecNode*> Supplier(std::vector<std::string> columns = {}) = 0;
|
||||
virtual Result<ExecNode*> Part(std::vector<std::string> columns = {}) = 0;
|
||||
virtual Result<ExecNode*> PartSupp(std::vector<std::string> columns = {}) = 0;
|
||||
virtual Result<ExecNode*> Customer(std::vector<std::string> columns = {}) = 0;
|
||||
virtual Result<ExecNode*> Orders(std::vector<std::string> columns = {}) = 0;
|
||||
virtual Result<ExecNode*> Lineitem(std::vector<std::string> columns = {}) = 0;
|
||||
virtual Result<ExecNode*> Nation(std::vector<std::string> columns = {}) = 0;
|
||||
virtual Result<ExecNode*> Region(std::vector<std::string> columns = {}) = 0;
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,428 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
#include <cstdint>
|
||||
#include <optional>
|
||||
#include <thread>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/buffer.h"
|
||||
#include "arrow/compute/exec/expression.h"
|
||||
#include "arrow/compute/exec/options.h"
|
||||
#include "arrow/compute/type_fwd.h"
|
||||
#include "arrow/memory_pool.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/util/bit_util.h"
|
||||
#include "arrow/util/cpu_info.h"
|
||||
#include "arrow/util/logging.h"
|
||||
#include "arrow/util/mutex.h"
|
||||
#include "arrow/util/thread_pool.h"
|
||||
|
||||
#if defined(__clang__) || defined(__GNUC__)
|
||||
#define BYTESWAP(x) __builtin_bswap64(x)
|
||||
#define ROTL(x, n) (((x) << (n)) | ((x) >> ((-n) & 31)))
|
||||
#define ROTL64(x, n) (((x) << (n)) | ((x) >> ((-n) & 63)))
|
||||
#define PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
|
||||
#elif defined(_MSC_VER)
|
||||
#include <intrin.h>
|
||||
#define BYTESWAP(x) _byteswap_uint64(x)
|
||||
#define ROTL(x, n) _rotl((x), (n))
|
||||
#define ROTL64(x, n) _rotl64((x), (n))
|
||||
#if defined(_M_X64) || defined(_M_I86)
|
||||
#include <mmintrin.h> // https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx
|
||||
#define PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
|
||||
#else
|
||||
#define PREFETCH(ptr) (void)(ptr) /* disabled */
|
||||
#endif
|
||||
#endif
|
||||
|
||||
namespace arrow {
|
||||
namespace util {
|
||||
|
||||
template <typename T>
|
||||
inline void CheckAlignment(const void* ptr) {
|
||||
ARROW_DCHECK(reinterpret_cast<uint64_t>(ptr) % sizeof(T) == 0);
|
||||
}
|
||||
|
||||
// Some platforms typedef int64_t as long int instead of long long int,
|
||||
// which breaks the _mm256_i64gather_epi64 and _mm256_i32gather_epi64 intrinsics
|
||||
// which need long long.
|
||||
// We use the cast to the type below in these intrinsics to make the code
|
||||
// compile in all cases.
|
||||
//
|
||||
using int64_for_gather_t = const long long int; // NOLINT runtime-int
|
||||
|
||||
// All MiniBatch... classes use TempVectorStack for vector allocations and can
|
||||
// only work with vectors up to 1024 elements.
|
||||
//
|
||||
// They should only be allocated on the stack to guarantee the right sequence
|
||||
// of allocation and deallocation of vectors from TempVectorStack.
|
||||
//
|
||||
class MiniBatch {
|
||||
public:
|
||||
static constexpr int kLogMiniBatchLength = 10;
|
||||
static constexpr int kMiniBatchLength = 1 << kLogMiniBatchLength;
|
||||
};
|
||||
|
||||
/// Storage used to allocate temporary vectors of a batch size.
|
||||
/// Temporary vectors should resemble allocating temporary variables on the stack
|
||||
/// but in the context of vectorized processing where we need to store a vector of
|
||||
/// temporaries instead of a single value.
|
||||
class TempVectorStack {
|
||||
template <typename>
|
||||
friend class TempVectorHolder;
|
||||
|
||||
public:
|
||||
Status Init(MemoryPool* pool, int64_t size) {
|
||||
num_vectors_ = 0;
|
||||
top_ = 0;
|
||||
buffer_size_ = PaddedAllocationSize(size) + kPadding + 2 * sizeof(uint64_t);
|
||||
ARROW_ASSIGN_OR_RAISE(auto buffer, AllocateResizableBuffer(size, pool));
|
||||
// Ensure later operations don't accidentally read uninitialized memory.
|
||||
std::memset(buffer->mutable_data(), 0xFF, size);
|
||||
buffer_ = std::move(buffer);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
private:
|
||||
int64_t PaddedAllocationSize(int64_t num_bytes) {
|
||||
// Round up allocation size to multiple of 8 bytes
|
||||
// to avoid returning temp vectors with unaligned address.
|
||||
//
|
||||
// Also add padding at the end to facilitate loads and stores
|
||||
// using SIMD when number of vector elements is not divisible
|
||||
// by the number of SIMD lanes.
|
||||
//
|
||||
return ::arrow::bit_util::RoundUp(num_bytes, sizeof(int64_t)) + kPadding;
|
||||
}
|
||||
void alloc(uint32_t num_bytes, uint8_t** data, int* id) {
|
||||
int64_t old_top = top_;
|
||||
top_ += PaddedAllocationSize(num_bytes) + 2 * sizeof(uint64_t);
|
||||
// Stack overflow check
|
||||
ARROW_DCHECK(top_ <= buffer_size_);
|
||||
*data = buffer_->mutable_data() + old_top + sizeof(uint64_t);
|
||||
// We set 8 bytes before the beginning of the allocated range and
|
||||
// 8 bytes after the end to check for stack overflow (which would
|
||||
// result in those known bytes being corrupted).
|
||||
reinterpret_cast<uint64_t*>(buffer_->mutable_data() + old_top)[0] = kGuard1;
|
||||
reinterpret_cast<uint64_t*>(buffer_->mutable_data() + top_)[-1] = kGuard2;
|
||||
*id = num_vectors_++;
|
||||
}
|
||||
void release(int id, uint32_t num_bytes) {
|
||||
ARROW_DCHECK(num_vectors_ == id + 1);
|
||||
int64_t size = PaddedAllocationSize(num_bytes) + 2 * sizeof(uint64_t);
|
||||
ARROW_DCHECK(reinterpret_cast<const uint64_t*>(buffer_->mutable_data() + top_)[-1] ==
|
||||
kGuard2);
|
||||
ARROW_DCHECK(top_ >= size);
|
||||
top_ -= size;
|
||||
ARROW_DCHECK(reinterpret_cast<const uint64_t*>(buffer_->mutable_data() + top_)[0] ==
|
||||
kGuard1);
|
||||
--num_vectors_;
|
||||
}
|
||||
static constexpr uint64_t kGuard1 = 0x3141592653589793ULL;
|
||||
static constexpr uint64_t kGuard2 = 0x0577215664901532ULL;
|
||||
static constexpr int64_t kPadding = 64;
|
||||
int num_vectors_;
|
||||
int64_t top_;
|
||||
std::unique_ptr<Buffer> buffer_;
|
||||
int64_t buffer_size_;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class TempVectorHolder {
|
||||
friend class TempVectorStack;
|
||||
|
||||
public:
|
||||
~TempVectorHolder() { stack_->release(id_, num_elements_ * sizeof(T)); }
|
||||
T* mutable_data() { return reinterpret_cast<T*>(data_); }
|
||||
TempVectorHolder(TempVectorStack* stack, uint32_t num_elements) {
|
||||
stack_ = stack;
|
||||
num_elements_ = num_elements;
|
||||
stack_->alloc(num_elements * sizeof(T), &data_, &id_);
|
||||
}
|
||||
|
||||
private:
|
||||
TempVectorStack* stack_;
|
||||
uint8_t* data_;
|
||||
int id_;
|
||||
uint32_t num_elements_;
|
||||
};
|
||||
|
||||
class bit_util {
|
||||
public:
|
||||
static void bits_to_indexes(int bit_to_search, int64_t hardware_flags,
|
||||
const int num_bits, const uint8_t* bits, int* num_indexes,
|
||||
uint16_t* indexes, int bit_offset = 0);
|
||||
|
||||
static void bits_filter_indexes(int bit_to_search, int64_t hardware_flags,
|
||||
const int num_bits, const uint8_t* bits,
|
||||
const uint16_t* input_indexes, int* num_indexes,
|
||||
uint16_t* indexes, int bit_offset = 0);
|
||||
|
||||
// Input and output indexes may be pointing to the same data (in-place filtering).
|
||||
static void bits_split_indexes(int64_t hardware_flags, const int num_bits,
|
||||
const uint8_t* bits, int* num_indexes_bit0,
|
||||
uint16_t* indexes_bit0, uint16_t* indexes_bit1,
|
||||
int bit_offset = 0);
|
||||
|
||||
// Bit 1 is replaced with byte 0xFF.
|
||||
static void bits_to_bytes(int64_t hardware_flags, const int num_bits,
|
||||
const uint8_t* bits, uint8_t* bytes, int bit_offset = 0);
|
||||
|
||||
// Return highest bit of each byte.
|
||||
static void bytes_to_bits(int64_t hardware_flags, const int num_bits,
|
||||
const uint8_t* bytes, uint8_t* bits, int bit_offset = 0);
|
||||
|
||||
static bool are_all_bytes_zero(int64_t hardware_flags, const uint8_t* bytes,
|
||||
uint32_t num_bytes);
|
||||
|
||||
private:
|
||||
inline static uint64_t SafeLoadUpTo8Bytes(const uint8_t* bytes, int num_bytes);
|
||||
inline static void SafeStoreUpTo8Bytes(uint8_t* bytes, int num_bytes, uint64_t value);
|
||||
inline static void bits_to_indexes_helper(uint64_t word, uint16_t base_index,
|
||||
int* num_indexes, uint16_t* indexes);
|
||||
inline static void bits_filter_indexes_helper(uint64_t word,
|
||||
const uint16_t* input_indexes,
|
||||
int* num_indexes, uint16_t* indexes);
|
||||
template <int bit_to_search, bool filter_input_indexes>
|
||||
static void bits_to_indexes_internal(int64_t hardware_flags, const int num_bits,
|
||||
const uint8_t* bits, const uint16_t* input_indexes,
|
||||
int* num_indexes, uint16_t* indexes,
|
||||
uint16_t base_index = 0);
|
||||
|
||||
#if defined(ARROW_HAVE_AVX2)
|
||||
static void bits_to_indexes_avx2(int bit_to_search, const int num_bits,
|
||||
const uint8_t* bits, int* num_indexes,
|
||||
uint16_t* indexes, uint16_t base_index = 0);
|
||||
static void bits_filter_indexes_avx2(int bit_to_search, const int num_bits,
|
||||
const uint8_t* bits, const uint16_t* input_indexes,
|
||||
int* num_indexes, uint16_t* indexes);
|
||||
template <int bit_to_search>
|
||||
static void bits_to_indexes_imp_avx2(const int num_bits, const uint8_t* bits,
|
||||
int* num_indexes, uint16_t* indexes,
|
||||
uint16_t base_index = 0);
|
||||
template <int bit_to_search>
|
||||
static void bits_filter_indexes_imp_avx2(const int num_bits, const uint8_t* bits,
|
||||
const uint16_t* input_indexes,
|
||||
int* num_indexes, uint16_t* indexes);
|
||||
static void bits_to_bytes_avx2(const int num_bits, const uint8_t* bits, uint8_t* bytes);
|
||||
static void bytes_to_bits_avx2(const int num_bits, const uint8_t* bytes, uint8_t* bits);
|
||||
static bool are_all_bytes_zero_avx2(const uint8_t* bytes, uint32_t num_bytes);
|
||||
#endif
|
||||
};
|
||||
|
||||
} // namespace util
|
||||
namespace compute {
|
||||
|
||||
ARROW_EXPORT
|
||||
Status ValidateExecNodeInputs(ExecPlan* plan, const std::vector<ExecNode*>& inputs,
|
||||
int expected_num_inputs, const char* kind_name);
|
||||
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<Table>> TableFromExecBatches(
|
||||
const std::shared_ptr<Schema>& schema, const std::vector<ExecBatch>& exec_batches);
|
||||
|
||||
class ARROW_EXPORT AtomicCounter {
|
||||
public:
|
||||
AtomicCounter() = default;
|
||||
|
||||
int count() const { return count_.load(); }
|
||||
|
||||
std::optional<int> total() const {
|
||||
int total = total_.load();
|
||||
if (total == -1) return {};
|
||||
return total;
|
||||
}
|
||||
|
||||
// return true if the counter is complete
|
||||
bool Increment() {
|
||||
DCHECK_NE(count_.load(), total_.load());
|
||||
int count = count_.fetch_add(1) + 1;
|
||||
if (count != total_.load()) return false;
|
||||
return DoneOnce();
|
||||
}
|
||||
|
||||
// return true if the counter is complete
|
||||
bool SetTotal(int total) {
|
||||
total_.store(total);
|
||||
if (count_.load() != total) return false;
|
||||
return DoneOnce();
|
||||
}
|
||||
|
||||
// return true if the counter has not already been completed
|
||||
bool Cancel() { return DoneOnce(); }
|
||||
|
||||
// return true if the counter has finished or been cancelled
|
||||
bool Completed() { return complete_.load(); }
|
||||
|
||||
private:
|
||||
// ensure there is only one true return from Increment(), SetTotal(), or Cancel()
|
||||
bool DoneOnce() {
|
||||
bool expected = false;
|
||||
return complete_.compare_exchange_strong(expected, true);
|
||||
}
|
||||
|
||||
std::atomic<int> count_{0}, total_{-1};
|
||||
std::atomic<bool> complete_{false};
|
||||
};
|
||||
|
||||
class ARROW_EXPORT ThreadIndexer {
|
||||
public:
|
||||
size_t operator()();
|
||||
|
||||
static size_t Capacity();
|
||||
|
||||
private:
|
||||
static size_t Check(size_t thread_index);
|
||||
|
||||
util::Mutex mutex_;
|
||||
std::unordered_map<std::thread::id, size_t> id_to_index_;
|
||||
};
|
||||
|
||||
// Helper class to calculate the modified number of rows to process using SIMD.
|
||||
//
|
||||
// Some array elements at the end will be skipped in order to avoid buffer
|
||||
// overrun, when doing memory loads and stores using larger word size than a
|
||||
// single array element.
|
||||
//
|
||||
class TailSkipForSIMD {
|
||||
public:
|
||||
static int64_t FixBitAccess(int num_bytes_accessed_together, int64_t num_rows,
|
||||
int bit_offset) {
|
||||
int64_t num_bytes = bit_util::BytesForBits(num_rows + bit_offset);
|
||||
int64_t num_bytes_safe =
|
||||
std::max(static_cast<int64_t>(0LL), num_bytes - num_bytes_accessed_together + 1);
|
||||
int64_t num_rows_safe =
|
||||
std::max(static_cast<int64_t>(0LL), 8 * num_bytes_safe - bit_offset);
|
||||
return std::min(num_rows_safe, num_rows);
|
||||
}
|
||||
static int64_t FixBinaryAccess(int num_bytes_accessed_together, int64_t num_rows,
|
||||
int64_t length) {
|
||||
int64_t num_rows_to_skip = bit_util::CeilDiv(length, num_bytes_accessed_together);
|
||||
int64_t num_rows_safe =
|
||||
std::max(static_cast<int64_t>(0LL), num_rows - num_rows_to_skip);
|
||||
return num_rows_safe;
|
||||
}
|
||||
static int64_t FixVarBinaryAccess(int num_bytes_accessed_together, int64_t num_rows,
|
||||
const uint32_t* offsets) {
|
||||
// Do not process rows that could read past the end of the buffer using N
|
||||
// byte loads/stores.
|
||||
//
|
||||
int64_t num_rows_safe = num_rows;
|
||||
while (num_rows_safe > 0 &&
|
||||
offsets[num_rows_safe] + num_bytes_accessed_together > offsets[num_rows]) {
|
||||
--num_rows_safe;
|
||||
}
|
||||
return num_rows_safe;
|
||||
}
|
||||
static int FixSelection(int64_t num_rows_safe, int num_selected,
|
||||
const uint16_t* selection) {
|
||||
int num_selected_safe = num_selected;
|
||||
while (num_selected_safe > 0 && selection[num_selected_safe - 1] >= num_rows_safe) {
|
||||
--num_selected_safe;
|
||||
}
|
||||
return num_selected_safe;
|
||||
}
|
||||
};
|
||||
|
||||
/// \brief A consumer that collects results into an in-memory table
|
||||
struct ARROW_EXPORT TableSinkNodeConsumer : public SinkNodeConsumer {
|
||||
public:
|
||||
TableSinkNodeConsumer(std::shared_ptr<Table>* out, MemoryPool* pool)
|
||||
: out_(out), pool_(pool) {}
|
||||
Status Init(const std::shared_ptr<Schema>& schema,
|
||||
BackpressureControl* backpressure_control, ExecPlan* plan) override;
|
||||
Status Consume(ExecBatch batch) override;
|
||||
Future<> Finish() override;
|
||||
|
||||
private:
|
||||
std::shared_ptr<Table>* out_;
|
||||
MemoryPool* pool_;
|
||||
std::shared_ptr<Schema> schema_;
|
||||
std::vector<std::shared_ptr<RecordBatch>> batches_;
|
||||
util::Mutex consume_mutex_;
|
||||
};
|
||||
|
||||
class ARROW_EXPORT NullSinkNodeConsumer : public SinkNodeConsumer {
|
||||
public:
|
||||
Status Init(const std::shared_ptr<Schema>&, BackpressureControl*,
|
||||
ExecPlan* plan) override {
|
||||
return Status::OK();
|
||||
}
|
||||
Status Consume(ExecBatch exec_batch) override { return Status::OK(); }
|
||||
Future<> Finish() override { return Status::OK(); }
|
||||
|
||||
public:
|
||||
static std::shared_ptr<NullSinkNodeConsumer> Make() {
|
||||
return std::make_shared<NullSinkNodeConsumer>();
|
||||
}
|
||||
};
|
||||
|
||||
/// Modify an Expression with pre-order and post-order visitation.
|
||||
/// `pre` will be invoked on each Expression. `pre` will visit Calls before their
|
||||
/// arguments, `post_call` will visit Calls (and no other Expressions) after their
|
||||
/// arguments. Visitors should return the Identical expression to indicate no change; this
|
||||
/// will prevent unnecessary construction in the common case where a modification is not
|
||||
/// possible/necessary/...
|
||||
///
|
||||
/// If an argument was modified, `post_call` visits a reconstructed Call with the modified
|
||||
/// arguments but also receives a pointer to the unmodified Expression as a second
|
||||
/// argument. If no arguments were modified the unmodified Expression* will be nullptr.
|
||||
template <typename PreVisit, typename PostVisitCall>
|
||||
Result<Expression> ModifyExpression(Expression expr, const PreVisit& pre,
|
||||
const PostVisitCall& post_call) {
|
||||
ARROW_ASSIGN_OR_RAISE(expr, Result<Expression>(pre(std::move(expr))));
|
||||
|
||||
auto call = expr.call();
|
||||
if (!call) return expr;
|
||||
|
||||
bool at_least_one_modified = false;
|
||||
std::vector<Expression> modified_arguments;
|
||||
|
||||
for (size_t i = 0; i < call->arguments.size(); ++i) {
|
||||
ARROW_ASSIGN_OR_RAISE(auto modified_argument,
|
||||
ModifyExpression(call->arguments[i], pre, post_call));
|
||||
|
||||
if (Identical(modified_argument, call->arguments[i])) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!at_least_one_modified) {
|
||||
modified_arguments = call->arguments;
|
||||
at_least_one_modified = true;
|
||||
}
|
||||
|
||||
modified_arguments[i] = std::move(modified_argument);
|
||||
}
|
||||
|
||||
if (at_least_one_modified) {
|
||||
// reconstruct the call expression with the modified arguments
|
||||
auto modified_call = *call;
|
||||
modified_call.arguments = std::move(modified_arguments);
|
||||
return post_call(Expression(std::move(modified_call)), &expr);
|
||||
}
|
||||
|
||||
return post_call(std::move(expr), NULLPTR);
|
||||
}
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,441 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// NOTE: API is EXPERIMENTAL and will change without going through a
|
||||
// deprecation cycle.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/compute/kernel.h"
|
||||
#include "arrow/compute/type_fwd.h"
|
||||
#include "arrow/datum.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/util/compare.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace compute {
|
||||
|
||||
/// \defgroup compute-functions Abstract compute function API
|
||||
///
|
||||
/// @{
|
||||
|
||||
/// \brief Extension point for defining options outside libarrow (but
|
||||
/// still within this project).
|
||||
class ARROW_EXPORT FunctionOptionsType {
|
||||
public:
|
||||
virtual ~FunctionOptionsType() = default;
|
||||
|
||||
virtual const char* type_name() const = 0;
|
||||
virtual std::string Stringify(const FunctionOptions&) const = 0;
|
||||
virtual bool Compare(const FunctionOptions&, const FunctionOptions&) const = 0;
|
||||
virtual Result<std::shared_ptr<Buffer>> Serialize(const FunctionOptions&) const;
|
||||
virtual Result<std::unique_ptr<FunctionOptions>> Deserialize(
|
||||
const Buffer& buffer) const;
|
||||
virtual std::unique_ptr<FunctionOptions> Copy(const FunctionOptions&) const = 0;
|
||||
};
|
||||
|
||||
/// \brief Base class for specifying options configuring a function's behavior,
|
||||
/// such as error handling.
|
||||
class ARROW_EXPORT FunctionOptions : public util::EqualityComparable<FunctionOptions> {
|
||||
public:
|
||||
virtual ~FunctionOptions() = default;
|
||||
|
||||
const FunctionOptionsType* options_type() const { return options_type_; }
|
||||
const char* type_name() const { return options_type()->type_name(); }
|
||||
|
||||
bool Equals(const FunctionOptions& other) const;
|
||||
using util::EqualityComparable<FunctionOptions>::Equals;
|
||||
using util::EqualityComparable<FunctionOptions>::operator==;
|
||||
using util::EqualityComparable<FunctionOptions>::operator!=;
|
||||
std::string ToString() const;
|
||||
std::unique_ptr<FunctionOptions> Copy() const;
|
||||
/// \brief Serialize an options struct to a buffer.
|
||||
Result<std::shared_ptr<Buffer>> Serialize() const;
|
||||
/// \brief Deserialize an options struct from a buffer.
|
||||
/// Note: this will only look for `type_name` in the default FunctionRegistry;
|
||||
/// to use a custom FunctionRegistry, look up the FunctionOptionsType, then
|
||||
/// call FunctionOptionsType::Deserialize().
|
||||
static Result<std::unique_ptr<FunctionOptions>> Deserialize(
|
||||
const std::string& type_name, const Buffer& buffer);
|
||||
|
||||
protected:
|
||||
explicit FunctionOptions(const FunctionOptionsType* type) : options_type_(type) {}
|
||||
const FunctionOptionsType* options_type_;
|
||||
};
|
||||
|
||||
ARROW_EXPORT void PrintTo(const FunctionOptions&, std::ostream*);
|
||||
|
||||
/// \brief Contains the number of required arguments for the function.
|
||||
///
|
||||
/// Naming conventions taken from https://en.wikipedia.org/wiki/Arity.
|
||||
struct ARROW_EXPORT Arity {
|
||||
/// \brief A function taking no arguments
|
||||
static Arity Nullary() { return Arity(0, false); }
|
||||
|
||||
/// \brief A function taking 1 argument
|
||||
static Arity Unary() { return Arity(1, false); }
|
||||
|
||||
/// \brief A function taking 2 arguments
|
||||
static Arity Binary() { return Arity(2, false); }
|
||||
|
||||
/// \brief A function taking 3 arguments
|
||||
static Arity Ternary() { return Arity(3, false); }
|
||||
|
||||
/// \brief A function taking a variable number of arguments
|
||||
///
|
||||
/// \param[in] min_args the minimum number of arguments required when
|
||||
/// invoking the function
|
||||
static Arity VarArgs(int min_args = 0) { return Arity(min_args, true); }
|
||||
|
||||
// NOTE: the 0-argument form (default constructor) is required for Cython
|
||||
explicit Arity(int num_args = 0, bool is_varargs = false)
|
||||
: num_args(num_args), is_varargs(is_varargs) {}
|
||||
|
||||
/// The number of required arguments (or the minimum number for varargs
|
||||
/// functions).
|
||||
int num_args;
|
||||
|
||||
/// If true, then the num_args is the minimum number of required arguments.
|
||||
bool is_varargs = false;
|
||||
};
|
||||
|
||||
struct ARROW_EXPORT FunctionDoc {
|
||||
/// \brief A one-line summary of the function, using a verb.
|
||||
///
|
||||
/// For example, "Add two numeric arrays or scalars".
|
||||
std::string summary;
|
||||
|
||||
/// \brief A detailed description of the function, meant to follow the summary.
|
||||
std::string description;
|
||||
|
||||
/// \brief Symbolic names (identifiers) for the function arguments.
|
||||
///
|
||||
/// Some bindings may use this to generate nicer function signatures.
|
||||
std::vector<std::string> arg_names;
|
||||
|
||||
// TODO add argument descriptions?
|
||||
|
||||
/// \brief Name of the options class, if any.
|
||||
std::string options_class;
|
||||
|
||||
/// \brief Whether options are required for function execution
|
||||
///
|
||||
/// If false, then either the function does not have an options class
|
||||
/// or there is a usable default options value.
|
||||
bool options_required;
|
||||
|
||||
FunctionDoc() = default;
|
||||
|
||||
FunctionDoc(std::string summary, std::string description,
|
||||
std::vector<std::string> arg_names, std::string options_class = "",
|
||||
bool options_required = false)
|
||||
: summary(std::move(summary)),
|
||||
description(std::move(description)),
|
||||
arg_names(std::move(arg_names)),
|
||||
options_class(std::move(options_class)),
|
||||
options_required(options_required) {}
|
||||
|
||||
static const FunctionDoc& Empty();
|
||||
};
|
||||
|
||||
/// \brief An executor of a function with a preconfigured kernel
|
||||
class ARROW_EXPORT FunctionExecutor {
|
||||
public:
|
||||
virtual ~FunctionExecutor() = default;
|
||||
/// \brief Initialize or re-initialize the preconfigured kernel
|
||||
///
|
||||
/// This method may be called zero or more times. Depending on how
|
||||
/// the FunctionExecutor was obtained, it may already have been initialized.
|
||||
virtual Status Init(const FunctionOptions* options = NULLPTR,
|
||||
ExecContext* exec_ctx = NULLPTR) = 0;
|
||||
/// \brief Execute the preconfigured kernel with arguments that must fit it
|
||||
///
|
||||
/// The method requires the arguments be castable to the preconfigured types.
|
||||
///
|
||||
/// \param[in] args Arguments to execute the function on
|
||||
/// \param[in] length Length of arguments batch or -1 to default it. If the
|
||||
/// function has no parameters, this determines the batch length, defaulting
|
||||
/// to 0. Otherwise, if the function is scalar, this must equal the argument
|
||||
/// batch's inferred length or be -1 to default to it. This is ignored for
|
||||
/// vector functions.
|
||||
virtual Result<Datum> Execute(const std::vector<Datum>& args, int64_t length = -1) = 0;
|
||||
};
|
||||
|
||||
/// \brief Base class for compute functions. Function implementations contain a
|
||||
/// collection of "kernels" which are implementations of the function for
|
||||
/// specific argument types. Selecting a viable kernel for executing a function
|
||||
/// is referred to as "dispatching".
|
||||
class ARROW_EXPORT Function {
|
||||
public:
|
||||
/// \brief The kind of function, which indicates in what contexts it is
|
||||
/// valid for use.
|
||||
enum Kind {
|
||||
/// A function that performs scalar data operations on whole arrays of
|
||||
/// data. Can generally process Array or Scalar values. The size of the
|
||||
/// output will be the same as the size (or broadcasted size, in the case
|
||||
/// of mixing Array and Scalar inputs) of the input.
|
||||
SCALAR,
|
||||
|
||||
/// A function with array input and output whose behavior depends on the
|
||||
/// values of the entire arrays passed, rather than the value of each scalar
|
||||
/// value.
|
||||
VECTOR,
|
||||
|
||||
/// A function that computes scalar summary statistics from array input.
|
||||
SCALAR_AGGREGATE,
|
||||
|
||||
/// A function that computes grouped summary statistics from array input
|
||||
/// and an array of group identifiers.
|
||||
HASH_AGGREGATE,
|
||||
|
||||
/// A function that dispatches to other functions and does not contain its
|
||||
/// own kernels.
|
||||
META
|
||||
};
|
||||
|
||||
virtual ~Function() = default;
|
||||
|
||||
/// \brief The name of the kernel. The registry enforces uniqueness of names.
|
||||
const std::string& name() const { return name_; }
|
||||
|
||||
/// \brief The kind of kernel, which indicates in what contexts it is valid
|
||||
/// for use.
|
||||
Function::Kind kind() const { return kind_; }
|
||||
|
||||
/// \brief Contains the number of arguments the function requires, or if the
|
||||
/// function accepts variable numbers of arguments.
|
||||
const Arity& arity() const { return arity_; }
|
||||
|
||||
/// \brief Return the function documentation
|
||||
const FunctionDoc& doc() const { return doc_; }
|
||||
|
||||
/// \brief Returns the number of registered kernels for this function.
|
||||
virtual int num_kernels() const = 0;
|
||||
|
||||
/// \brief Return a kernel that can execute the function given the exact
|
||||
/// argument types (without implicit type casts).
|
||||
///
|
||||
/// NB: This function is overridden in CastFunction.
|
||||
virtual Result<const Kernel*> DispatchExact(const std::vector<TypeHolder>& types) const;
|
||||
|
||||
/// \brief Return a best-match kernel that can execute the function given the argument
|
||||
/// types, after implicit casts are applied.
|
||||
///
|
||||
/// \param[in,out] values Argument types. An element may be modified to
|
||||
/// indicate that the returned kernel only approximately matches the input
|
||||
/// value descriptors; callers are responsible for casting inputs to the type
|
||||
/// required by the kernel.
|
||||
virtual Result<const Kernel*> DispatchBest(std::vector<TypeHolder>* values) const;
|
||||
|
||||
/// \brief Get a function executor with a best-matching kernel
|
||||
///
|
||||
/// The returned executor will by default work with the default FunctionOptions
|
||||
/// and KernelContext. If you want to change that, call `FunctionExecutor::Init`.
|
||||
virtual Result<std::shared_ptr<FunctionExecutor>> GetBestExecutor(
|
||||
std::vector<TypeHolder> inputs) const;
|
||||
|
||||
/// \brief Execute the function eagerly with the passed input arguments with
|
||||
/// kernel dispatch, batch iteration, and memory allocation details taken
|
||||
/// care of.
|
||||
///
|
||||
/// If the `options` pointer is null, then `default_options()` will be used.
|
||||
///
|
||||
/// This function can be overridden in subclasses.
|
||||
virtual Result<Datum> Execute(const std::vector<Datum>& args,
|
||||
const FunctionOptions* options, ExecContext* ctx) const;
|
||||
|
||||
virtual Result<Datum> Execute(const ExecBatch& batch, const FunctionOptions* options,
|
||||
ExecContext* ctx) const;
|
||||
|
||||
/// \brief Returns the default options for this function.
|
||||
///
|
||||
/// Whatever option semantics a Function has, implementations must guarantee
|
||||
/// that default_options() is valid to pass to Execute as options.
|
||||
const FunctionOptions* default_options() const { return default_options_; }
|
||||
|
||||
virtual Status Validate() const;
|
||||
|
||||
protected:
|
||||
Function(std::string name, Function::Kind kind, const Arity& arity, FunctionDoc doc,
|
||||
const FunctionOptions* default_options)
|
||||
: name_(std::move(name)),
|
||||
kind_(kind),
|
||||
arity_(arity),
|
||||
doc_(std::move(doc)),
|
||||
default_options_(default_options) {}
|
||||
|
||||
Status CheckArity(size_t num_args) const;
|
||||
|
||||
std::string name_;
|
||||
Function::Kind kind_;
|
||||
Arity arity_;
|
||||
const FunctionDoc doc_;
|
||||
const FunctionOptions* default_options_ = NULLPTR;
|
||||
};
|
||||
|
||||
namespace detail {
|
||||
|
||||
template <typename KernelType>
|
||||
class FunctionImpl : public Function {
|
||||
public:
|
||||
/// \brief Return pointers to current-available kernels for inspection
|
||||
std::vector<const KernelType*> kernels() const {
|
||||
std::vector<const KernelType*> result;
|
||||
for (const auto& kernel : kernels_) {
|
||||
result.push_back(&kernel);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
int num_kernels() const override { return static_cast<int>(kernels_.size()); }
|
||||
|
||||
protected:
|
||||
FunctionImpl(std::string name, Function::Kind kind, const Arity& arity, FunctionDoc doc,
|
||||
const FunctionOptions* default_options)
|
||||
: Function(std::move(name), kind, arity, std::move(doc), default_options) {}
|
||||
|
||||
std::vector<KernelType> kernels_;
|
||||
};
|
||||
|
||||
/// \brief Look up a kernel in a function. If no Kernel is found, nullptr is returned.
|
||||
ARROW_EXPORT
|
||||
const Kernel* DispatchExactImpl(const Function* func, const std::vector<TypeHolder>&);
|
||||
|
||||
/// \brief Return an error message if no Kernel is found.
|
||||
ARROW_EXPORT
|
||||
Status NoMatchingKernel(const Function* func, const std::vector<TypeHolder>&);
|
||||
|
||||
} // namespace detail
|
||||
|
||||
/// \brief A function that executes elementwise operations on arrays or
|
||||
/// scalars, and therefore whose results generally do not depend on the order
|
||||
/// of the values in the arguments. Accepts and returns arrays that are all of
|
||||
/// the same size. These functions roughly correspond to the functions used in
|
||||
/// SQL expressions.
|
||||
class ARROW_EXPORT ScalarFunction : public detail::FunctionImpl<ScalarKernel> {
|
||||
public:
|
||||
using KernelType = ScalarKernel;
|
||||
|
||||
ScalarFunction(std::string name, const Arity& arity, FunctionDoc doc,
|
||||
const FunctionOptions* default_options = NULLPTR)
|
||||
: detail::FunctionImpl<ScalarKernel>(std::move(name), Function::SCALAR, arity,
|
||||
std::move(doc), default_options) {}
|
||||
|
||||
/// \brief Add a kernel with given input/output types, no required state
|
||||
/// initialization, preallocation for fixed-width types, and default null
|
||||
/// handling (intersect validity bitmaps of inputs).
|
||||
Status AddKernel(std::vector<InputType> in_types, OutputType out_type,
|
||||
ArrayKernelExec exec, KernelInit init = NULLPTR);
|
||||
|
||||
/// \brief Add a kernel (function implementation). Returns error if the
|
||||
/// kernel's signature does not match the function's arity.
|
||||
Status AddKernel(ScalarKernel kernel);
|
||||
};
|
||||
|
||||
/// \brief A function that executes general array operations that may yield
|
||||
/// outputs of different sizes or have results that depend on the whole array
|
||||
/// contents. These functions roughly correspond to the functions found in
|
||||
/// non-SQL array languages like APL and its derivatives.
|
||||
class ARROW_EXPORT VectorFunction : public detail::FunctionImpl<VectorKernel> {
|
||||
public:
|
||||
using KernelType = VectorKernel;
|
||||
|
||||
VectorFunction(std::string name, const Arity& arity, FunctionDoc doc,
|
||||
const FunctionOptions* default_options = NULLPTR)
|
||||
: detail::FunctionImpl<VectorKernel>(std::move(name), Function::VECTOR, arity,
|
||||
std::move(doc), default_options) {}
|
||||
|
||||
/// \brief Add a simple kernel with given input/output types, no required
|
||||
/// state initialization, no data preallocation, and no preallocation of the
|
||||
/// validity bitmap.
|
||||
Status AddKernel(std::vector<InputType> in_types, OutputType out_type,
|
||||
ArrayKernelExec exec, KernelInit init = NULLPTR);
|
||||
|
||||
/// \brief Add a kernel (function implementation). Returns error if the
|
||||
/// kernel's signature does not match the function's arity.
|
||||
Status AddKernel(VectorKernel kernel);
|
||||
};
|
||||
|
||||
class ARROW_EXPORT ScalarAggregateFunction
|
||||
: public detail::FunctionImpl<ScalarAggregateKernel> {
|
||||
public:
|
||||
using KernelType = ScalarAggregateKernel;
|
||||
|
||||
ScalarAggregateFunction(std::string name, const Arity& arity, FunctionDoc doc,
|
||||
const FunctionOptions* default_options = NULLPTR)
|
||||
: detail::FunctionImpl<ScalarAggregateKernel>(std::move(name),
|
||||
Function::SCALAR_AGGREGATE, arity,
|
||||
std::move(doc), default_options) {}
|
||||
|
||||
/// \brief Add a kernel (function implementation). Returns error if the
|
||||
/// kernel's signature does not match the function's arity.
|
||||
Status AddKernel(ScalarAggregateKernel kernel);
|
||||
};
|
||||
|
||||
class ARROW_EXPORT HashAggregateFunction
|
||||
: public detail::FunctionImpl<HashAggregateKernel> {
|
||||
public:
|
||||
using KernelType = HashAggregateKernel;
|
||||
|
||||
HashAggregateFunction(std::string name, const Arity& arity, FunctionDoc doc,
|
||||
const FunctionOptions* default_options = NULLPTR)
|
||||
: detail::FunctionImpl<HashAggregateKernel>(std::move(name),
|
||||
Function::HASH_AGGREGATE, arity,
|
||||
std::move(doc), default_options) {}
|
||||
|
||||
/// \brief Add a kernel (function implementation). Returns error if the
|
||||
/// kernel's signature does not match the function's arity.
|
||||
Status AddKernel(HashAggregateKernel kernel);
|
||||
};
|
||||
|
||||
/// \brief A function that dispatches to other functions. Must implement
|
||||
/// MetaFunction::ExecuteImpl.
|
||||
///
|
||||
/// For Array, ChunkedArray, and Scalar Datum kinds, may rely on the execution
|
||||
/// of concrete Function types, but must handle other Datum kinds on its own.
|
||||
class ARROW_EXPORT MetaFunction : public Function {
|
||||
public:
|
||||
int num_kernels() const override { return 0; }
|
||||
|
||||
Result<Datum> Execute(const std::vector<Datum>& args, const FunctionOptions* options,
|
||||
ExecContext* ctx) const override;
|
||||
|
||||
Result<Datum> Execute(const ExecBatch& batch, const FunctionOptions* options,
|
||||
ExecContext* ctx) const override;
|
||||
|
||||
protected:
|
||||
virtual Result<Datum> ExecuteImpl(const std::vector<Datum>& args,
|
||||
const FunctionOptions* options,
|
||||
ExecContext* ctx) const = 0;
|
||||
|
||||
MetaFunction(std::string name, const Arity& arity, FunctionDoc doc,
|
||||
const FunctionOptions* default_options = NULLPTR)
|
||||
: Function(std::move(name), Function::META, arity, std::move(doc),
|
||||
default_options) {}
|
||||
};
|
||||
|
||||
/// @}
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,705 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// NOTE: API is EXPERIMENTAL and will change without going through a
|
||||
// deprecation cycle
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/buffer.h"
|
||||
#include "arrow/compute/exec.h"
|
||||
#include "arrow/datum.h"
|
||||
#include "arrow/memory_pool.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/type.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace compute {
|
||||
|
||||
class FunctionOptions;
|
||||
|
||||
/// \brief Base class for opaque kernel-specific state. For example, if there
|
||||
/// is some kind of initialization required.
|
||||
struct ARROW_EXPORT KernelState {
|
||||
virtual ~KernelState() = default;
|
||||
};
|
||||
|
||||
/// \brief Context/state for the execution of a particular kernel.
|
||||
class ARROW_EXPORT KernelContext {
|
||||
public:
|
||||
// Can pass optional backreference; not used consistently for the
|
||||
// moment but will be made so in the future
|
||||
explicit KernelContext(ExecContext* exec_ctx, const Kernel* kernel = NULLPTR)
|
||||
: exec_ctx_(exec_ctx), kernel_(kernel) {}
|
||||
|
||||
/// \brief Allocate buffer from the context's memory pool. The contents are
|
||||
/// not initialized.
|
||||
Result<std::shared_ptr<ResizableBuffer>> Allocate(int64_t nbytes);
|
||||
|
||||
/// \brief Allocate buffer for bitmap from the context's memory pool. Like
|
||||
/// Allocate, the contents of the buffer are not initialized but the last
|
||||
/// byte is preemptively zeroed to help avoid ASAN or valgrind issues.
|
||||
Result<std::shared_ptr<ResizableBuffer>> AllocateBitmap(int64_t num_bits);
|
||||
|
||||
/// \brief Assign the active KernelState to be utilized for each stage of
|
||||
/// kernel execution. Ownership and memory lifetime of the KernelState must
|
||||
/// be minded separately.
|
||||
void SetState(KernelState* state) { state_ = state; }
|
||||
|
||||
// Set kernel that is being invoked since some kernel
|
||||
// implementations will examine the kernel state.
|
||||
void SetKernel(const Kernel* kernel) { kernel_ = kernel; }
|
||||
|
||||
KernelState* state() { return state_; }
|
||||
|
||||
/// \brief Configuration related to function execution that is to be shared
|
||||
/// across multiple kernels.
|
||||
ExecContext* exec_context() { return exec_ctx_; }
|
||||
|
||||
/// \brief The memory pool to use for allocations. For now, it uses the
|
||||
/// MemoryPool contained in the ExecContext used to create the KernelContext.
|
||||
MemoryPool* memory_pool() { return exec_ctx_->memory_pool(); }
|
||||
|
||||
const Kernel* kernel() const { return kernel_; }
|
||||
|
||||
private:
|
||||
ExecContext* exec_ctx_;
|
||||
KernelState* state_ = NULLPTR;
|
||||
const Kernel* kernel_ = NULLPTR;
|
||||
};
|
||||
|
||||
/// \brief An type-checking interface to permit customizable validation rules
|
||||
/// for use with InputType and KernelSignature. This is for scenarios where the
|
||||
/// acceptance is not an exact type instance, such as a TIMESTAMP type for a
|
||||
/// specific TimeUnit, but permitting any time zone.
|
||||
struct ARROW_EXPORT TypeMatcher {
|
||||
virtual ~TypeMatcher() = default;
|
||||
|
||||
/// \brief Return true if this matcher accepts the data type.
|
||||
virtual bool Matches(const DataType& type) const = 0;
|
||||
|
||||
/// \brief A human-interpretable string representation of what the type
|
||||
/// matcher checks for, usable when printing KernelSignature or formatting
|
||||
/// error messages.
|
||||
virtual std::string ToString() const = 0;
|
||||
|
||||
/// \brief Return true if this TypeMatcher contains the same matching rule as
|
||||
/// the other. Currently depends on RTTI.
|
||||
virtual bool Equals(const TypeMatcher& other) const = 0;
|
||||
};
|
||||
|
||||
namespace match {
|
||||
|
||||
/// \brief Match any DataType instance having the same DataType::id.
|
||||
ARROW_EXPORT std::shared_ptr<TypeMatcher> SameTypeId(Type::type type_id);
|
||||
|
||||
/// \brief Match any TimestampType instance having the same unit, but the time
|
||||
/// zones can be different.
|
||||
ARROW_EXPORT std::shared_ptr<TypeMatcher> TimestampTypeUnit(TimeUnit::type unit);
|
||||
ARROW_EXPORT std::shared_ptr<TypeMatcher> Time32TypeUnit(TimeUnit::type unit);
|
||||
ARROW_EXPORT std::shared_ptr<TypeMatcher> Time64TypeUnit(TimeUnit::type unit);
|
||||
ARROW_EXPORT std::shared_ptr<TypeMatcher> DurationTypeUnit(TimeUnit::type unit);
|
||||
|
||||
// \brief Match any integer type
|
||||
ARROW_EXPORT std::shared_ptr<TypeMatcher> Integer();
|
||||
|
||||
// Match types using 32-bit varbinary representation
|
||||
ARROW_EXPORT std::shared_ptr<TypeMatcher> BinaryLike();
|
||||
|
||||
// Match types using 64-bit varbinary representation
|
||||
ARROW_EXPORT std::shared_ptr<TypeMatcher> LargeBinaryLike();
|
||||
|
||||
// Match any fixed binary type
|
||||
ARROW_EXPORT std::shared_ptr<TypeMatcher> FixedSizeBinaryLike();
|
||||
|
||||
// \brief Match any primitive type (boolean or any type representable as a C
|
||||
// Type)
|
||||
ARROW_EXPORT std::shared_ptr<TypeMatcher> Primitive();
|
||||
|
||||
} // namespace match
|
||||
|
||||
/// \brief An object used for type-checking arguments to be passed to a kernel
|
||||
/// and stored in a KernelSignature. The type-checking rule can be supplied
|
||||
/// either with an exact DataType instance or a custom TypeMatcher.
|
||||
class ARROW_EXPORT InputType {
|
||||
public:
|
||||
/// \brief The kind of type-checking rule that the InputType contains.
|
||||
enum Kind {
|
||||
/// \brief Accept any value type.
|
||||
ANY_TYPE,
|
||||
|
||||
/// \brief A fixed arrow::DataType and will only exact match having this
|
||||
/// exact type (e.g. same TimestampType unit, same decimal scale and
|
||||
/// precision, or same nested child types).
|
||||
EXACT_TYPE,
|
||||
|
||||
/// \brief Uses a TypeMatcher implementation to check the type.
|
||||
USE_TYPE_MATCHER
|
||||
};
|
||||
|
||||
/// \brief Accept any value type
|
||||
InputType() : kind_(ANY_TYPE) {}
|
||||
|
||||
/// \brief Accept an exact value type.
|
||||
InputType(std::shared_ptr<DataType> type) // NOLINT implicit construction
|
||||
: kind_(EXACT_TYPE), type_(std::move(type)) {}
|
||||
|
||||
/// \brief Use the passed TypeMatcher to type check.
|
||||
InputType(std::shared_ptr<TypeMatcher> type_matcher) // NOLINT implicit construction
|
||||
: kind_(USE_TYPE_MATCHER), type_matcher_(std::move(type_matcher)) {}
|
||||
|
||||
/// \brief Match any type with the given Type::type. Uses a TypeMatcher for
|
||||
/// its implementation.
|
||||
InputType(Type::type type_id) // NOLINT implicit construction
|
||||
: InputType(match::SameTypeId(type_id)) {}
|
||||
|
||||
InputType(const InputType& other) { CopyInto(other); }
|
||||
|
||||
void operator=(const InputType& other) { CopyInto(other); }
|
||||
|
||||
InputType(InputType&& other) { MoveInto(std::forward<InputType>(other)); }
|
||||
|
||||
void operator=(InputType&& other) { MoveInto(std::forward<InputType>(other)); }
|
||||
|
||||
// \brief Match any input (array, scalar of any type)
|
||||
static InputType Any() { return InputType(); }
|
||||
|
||||
/// \brief Return true if this input type matches the same type cases as the
|
||||
/// other.
|
||||
bool Equals(const InputType& other) const;
|
||||
|
||||
bool operator==(const InputType& other) const { return this->Equals(other); }
|
||||
|
||||
bool operator!=(const InputType& other) const { return !(*this == other); }
|
||||
|
||||
/// \brief Return hash code.
|
||||
size_t Hash() const;
|
||||
|
||||
/// \brief Render a human-readable string representation.
|
||||
std::string ToString() const;
|
||||
|
||||
/// \brief Return true if the Datum matches this argument kind in
|
||||
/// type (and only allows scalar or array-like Datums).
|
||||
bool Matches(const Datum& value) const;
|
||||
|
||||
/// \brief Return true if the type matches this InputType
|
||||
bool Matches(const DataType& type) const;
|
||||
|
||||
/// \brief The type matching rule that this InputType uses.
|
||||
Kind kind() const { return kind_; }
|
||||
|
||||
/// \brief For InputType::EXACT_TYPE kind, the exact type that this InputType
|
||||
/// must match. Otherwise this function should not be used and will assert in
|
||||
/// debug builds.
|
||||
const std::shared_ptr<DataType>& type() const;
|
||||
|
||||
/// \brief For InputType::USE_TYPE_MATCHER, the TypeMatcher to be used for
|
||||
/// checking the type of a value. Otherwise this function should not be used
|
||||
/// and will assert in debug builds.
|
||||
const TypeMatcher& type_matcher() const;
|
||||
|
||||
private:
|
||||
void CopyInto(const InputType& other) {
|
||||
this->kind_ = other.kind_;
|
||||
this->type_ = other.type_;
|
||||
this->type_matcher_ = other.type_matcher_;
|
||||
}
|
||||
|
||||
void MoveInto(InputType&& other) {
|
||||
this->kind_ = other.kind_;
|
||||
this->type_ = std::move(other.type_);
|
||||
this->type_matcher_ = std::move(other.type_matcher_);
|
||||
}
|
||||
|
||||
Kind kind_;
|
||||
|
||||
// For EXACT_TYPE Kind
|
||||
std::shared_ptr<DataType> type_;
|
||||
|
||||
// For USE_TYPE_MATCHER Kind
|
||||
std::shared_ptr<TypeMatcher> type_matcher_;
|
||||
};
|
||||
|
||||
/// \brief Container to capture both exact and input-dependent output types.
|
||||
class ARROW_EXPORT OutputType {
|
||||
public:
|
||||
/// \brief An enum indicating whether the value type is an invariant fixed
|
||||
/// value or one that's computed by a kernel-defined resolver function.
|
||||
enum ResolveKind { FIXED, COMPUTED };
|
||||
|
||||
/// Type resolution function. Given input types, return output type. This
|
||||
/// function MAY may use the kernel state to decide the output type based on
|
||||
/// the FunctionOptions.
|
||||
///
|
||||
/// This function SHOULD _not_ be used to check for arity, that is to be
|
||||
/// performed one or more layers above.
|
||||
using Resolver = Result<TypeHolder> (*)(KernelContext*, const std::vector<TypeHolder>&);
|
||||
|
||||
/// \brief Output an exact type
|
||||
OutputType(std::shared_ptr<DataType> type) // NOLINT implicit construction
|
||||
: kind_(FIXED), type_(std::move(type)) {}
|
||||
|
||||
/// \brief Output a computed type depending on actual input types
|
||||
OutputType(Resolver resolver) // NOLINT implicit construction
|
||||
: kind_(COMPUTED), resolver_(std::move(resolver)) {}
|
||||
|
||||
OutputType(const OutputType& other) {
|
||||
this->kind_ = other.kind_;
|
||||
this->type_ = other.type_;
|
||||
this->resolver_ = other.resolver_;
|
||||
}
|
||||
|
||||
OutputType(OutputType&& other) {
|
||||
this->kind_ = other.kind_;
|
||||
this->type_ = std::move(other.type_);
|
||||
this->resolver_ = other.resolver_;
|
||||
}
|
||||
|
||||
OutputType& operator=(const OutputType&) = default;
|
||||
OutputType& operator=(OutputType&&) = default;
|
||||
|
||||
/// \brief Return the type of the expected output value of the kernel given
|
||||
/// the input argument types. The resolver may make use of state information
|
||||
/// kept in the KernelContext.
|
||||
Result<TypeHolder> Resolve(KernelContext* ctx,
|
||||
const std::vector<TypeHolder>& args) const;
|
||||
|
||||
/// \brief The exact output value type for the FIXED kind.
|
||||
const std::shared_ptr<DataType>& type() const;
|
||||
|
||||
/// \brief For use with COMPUTED resolution strategy. It may be more
|
||||
/// convenient to invoke this with OutputType::Resolve returned from this
|
||||
/// method.
|
||||
const Resolver& resolver() const;
|
||||
|
||||
/// \brief Render a human-readable string representation.
|
||||
std::string ToString() const;
|
||||
|
||||
/// \brief Return the kind of type resolution of this output type, whether
|
||||
/// fixed/invariant or computed by a resolver.
|
||||
ResolveKind kind() const { return kind_; }
|
||||
|
||||
private:
|
||||
ResolveKind kind_;
|
||||
|
||||
// For FIXED resolution
|
||||
std::shared_ptr<DataType> type_;
|
||||
|
||||
// For COMPUTED resolution
|
||||
Resolver resolver_ = NULLPTR;
|
||||
};
|
||||
|
||||
/// \brief Holds the input types and output type of the kernel.
|
||||
///
|
||||
/// VarArgs functions with minimum N arguments should pass up to N input types to be
|
||||
/// used to validate the input types of a function invocation. The first N-1 types
|
||||
/// will be matched against the first N-1 arguments, and the last type will be
|
||||
/// matched against the remaining arguments.
|
||||
class ARROW_EXPORT KernelSignature {
|
||||
public:
|
||||
KernelSignature(std::vector<InputType> in_types, OutputType out_type,
|
||||
bool is_varargs = false);
|
||||
|
||||
/// \brief Convenience ctor since make_shared can be awkward
|
||||
static std::shared_ptr<KernelSignature> Make(std::vector<InputType> in_types,
|
||||
OutputType out_type,
|
||||
bool is_varargs = false);
|
||||
|
||||
/// \brief Return true if the signature if compatible with the list of input
|
||||
/// value descriptors.
|
||||
bool MatchesInputs(const std::vector<TypeHolder>& types) const;
|
||||
|
||||
/// \brief Returns true if the input types of each signature are
|
||||
/// equal. Well-formed functions should have a deterministic output type
|
||||
/// given input types, but currently it is the responsibility of the
|
||||
/// developer to ensure this.
|
||||
bool Equals(const KernelSignature& other) const;
|
||||
|
||||
bool operator==(const KernelSignature& other) const { return this->Equals(other); }
|
||||
|
||||
bool operator!=(const KernelSignature& other) const { return !(*this == other); }
|
||||
|
||||
/// \brief Compute a hash code for the signature
|
||||
size_t Hash() const;
|
||||
|
||||
/// \brief The input types for the kernel. For VarArgs functions, this should
|
||||
/// generally contain a single validator to use for validating all of the
|
||||
/// function arguments.
|
||||
const std::vector<InputType>& in_types() const { return in_types_; }
|
||||
|
||||
/// \brief The output type for the kernel. Use Resolve to return the
|
||||
/// exact output given input argument types, since many kernels'
|
||||
/// output types depend on their input types (or their type
|
||||
/// metadata).
|
||||
const OutputType& out_type() const { return out_type_; }
|
||||
|
||||
/// \brief Render a human-readable string representation
|
||||
std::string ToString() const;
|
||||
|
||||
bool is_varargs() const { return is_varargs_; }
|
||||
|
||||
private:
|
||||
std::vector<InputType> in_types_;
|
||||
OutputType out_type_;
|
||||
bool is_varargs_;
|
||||
|
||||
// For caching the hash code after it's computed the first time
|
||||
mutable uint64_t hash_code_;
|
||||
};
|
||||
|
||||
/// \brief A function may contain multiple variants of a kernel for a given
|
||||
/// type combination for different SIMD levels. Based on the active system's
|
||||
/// CPU info or the user's preferences, we can elect to use one over the other.
|
||||
struct SimdLevel {
|
||||
enum type { NONE = 0, SSE4_2, AVX, AVX2, AVX512, NEON, MAX };
|
||||
};
|
||||
|
||||
/// \brief The strategy to use for propagating or otherwise populating the
|
||||
/// validity bitmap of a kernel output.
|
||||
struct NullHandling {
|
||||
enum type {
|
||||
/// Compute the output validity bitmap by intersecting the validity bitmaps
|
||||
/// of the arguments using bitwise-and operations. This means that values
|
||||
/// in the output are valid/non-null only if the corresponding values in
|
||||
/// all input arguments were valid/non-null. Kernel generally need not
|
||||
/// touch the bitmap thereafter, but a kernel's exec function is permitted
|
||||
/// to alter the bitmap after the null intersection is computed if it needs
|
||||
/// to.
|
||||
INTERSECTION,
|
||||
|
||||
/// Kernel expects a pre-allocated buffer to write the result bitmap
|
||||
/// into. The preallocated memory is not zeroed (except for the last byte),
|
||||
/// so the kernel should ensure to completely populate the bitmap.
|
||||
COMPUTED_PREALLOCATE,
|
||||
|
||||
/// Kernel allocates and sets the validity bitmap of the output.
|
||||
COMPUTED_NO_PREALLOCATE,
|
||||
|
||||
/// Kernel output is never null and a validity bitmap does not need to be
|
||||
/// allocated.
|
||||
OUTPUT_NOT_NULL
|
||||
};
|
||||
};
|
||||
|
||||
/// \brief The preference for memory preallocation of fixed-width type outputs
|
||||
/// in kernel execution.
|
||||
struct MemAllocation {
|
||||
enum type {
|
||||
// For data types that support pre-allocation (i.e. fixed-width), the
|
||||
// kernel expects to be provided a pre-allocated data buffer to write
|
||||
// into. Non-fixed-width types must always allocate their own data
|
||||
// buffers. The allocation made for the same length as the execution batch,
|
||||
// so vector kernels yielding differently sized output should not use this.
|
||||
//
|
||||
// It is valid for the data to not be preallocated but the validity bitmap
|
||||
// is (or is computed using the intersection/bitwise-and method).
|
||||
//
|
||||
// For variable-size output types like BinaryType or StringType, or for
|
||||
// nested types, this option has no effect.
|
||||
PREALLOCATE,
|
||||
|
||||
// The kernel is responsible for allocating its own data buffer for
|
||||
// fixed-width type outputs.
|
||||
NO_PREALLOCATE
|
||||
};
|
||||
};
|
||||
|
||||
struct Kernel;
|
||||
|
||||
/// \brief Arguments to pass to an KernelInit function. A struct is used to help
|
||||
/// avoid API breakage should the arguments passed need to be expanded.
|
||||
struct KernelInitArgs {
|
||||
/// \brief A pointer to the kernel being initialized. The init function may
|
||||
/// depend on the kernel's KernelSignature or other data contained there.
|
||||
const Kernel* kernel;
|
||||
|
||||
/// \brief The types of the input arguments that the kernel is
|
||||
/// about to be executed against.
|
||||
const std::vector<TypeHolder>& inputs;
|
||||
|
||||
/// \brief Opaque options specific to this kernel. May be nullptr for functions
|
||||
/// that do not require options.
|
||||
const FunctionOptions* options;
|
||||
};
|
||||
|
||||
/// \brief Common initializer function for all kernel types.
|
||||
using KernelInit = std::function<Result<std::unique_ptr<KernelState>>(
|
||||
KernelContext*, const KernelInitArgs&)>;
|
||||
|
||||
/// \brief Base type for kernels. Contains the function signature and
|
||||
/// optionally the state initialization function, along with some common
|
||||
/// attributes
|
||||
struct Kernel {
|
||||
Kernel() = default;
|
||||
|
||||
Kernel(std::shared_ptr<KernelSignature> sig, KernelInit init)
|
||||
: signature(std::move(sig)), init(std::move(init)) {}
|
||||
|
||||
Kernel(std::vector<InputType> in_types, OutputType out_type, KernelInit init)
|
||||
: Kernel(KernelSignature::Make(std::move(in_types), std::move(out_type)),
|
||||
std::move(init)) {}
|
||||
|
||||
/// \brief The "signature" of the kernel containing the InputType input
|
||||
/// argument validators and OutputType output type resolver.
|
||||
std::shared_ptr<KernelSignature> signature;
|
||||
|
||||
/// \brief Create a new KernelState for invocations of this kernel, e.g. to
|
||||
/// set up any options or state relevant for execution.
|
||||
KernelInit init;
|
||||
|
||||
/// \brief Create a vector of new KernelState for invocations of this kernel.
|
||||
static Status InitAll(KernelContext*, const KernelInitArgs&,
|
||||
std::vector<std::unique_ptr<KernelState>>*);
|
||||
|
||||
/// \brief Indicates whether execution can benefit from parallelization
|
||||
/// (splitting large chunks into smaller chunks and using multiple
|
||||
/// threads). Some kernels may not support parallel execution at
|
||||
/// all. Synchronization and concurrency-related issues are currently the
|
||||
/// responsibility of the Kernel's implementation.
|
||||
bool parallelizable = true;
|
||||
|
||||
/// \brief Indicates the level of SIMD instruction support in the host CPU is
|
||||
/// required to use the function. The intention is for functions to be able to
|
||||
/// contain multiple kernels with the same signature but different levels of SIMD,
|
||||
/// so that the most optimized kernel supported on a host's processor can be chosen.
|
||||
SimdLevel::type simd_level = SimdLevel::NONE;
|
||||
|
||||
// Additional kernel-specific data
|
||||
std::shared_ptr<KernelState> data;
|
||||
};
|
||||
|
||||
/// \brief The scalar kernel execution API that must be implemented for SCALAR
|
||||
/// kernel types. This includes both stateless and stateful kernels. Kernels
|
||||
/// depending on some execution state access that state via subclasses of
|
||||
/// KernelState set on the KernelContext object. Implementations should
|
||||
/// endeavor to write into pre-allocated memory if they are able, though for
|
||||
/// some kernels (e.g. in cases when a builder like StringBuilder) must be
|
||||
/// employed this may not be possible.
|
||||
using ArrayKernelExec = Status (*)(KernelContext*, const ExecSpan&, ExecResult*);
|
||||
|
||||
/// \brief Kernel data structure for implementations of ScalarFunction. In
|
||||
/// addition to the members found in Kernel, contains the null handling
|
||||
/// and memory pre-allocation preferences.
|
||||
struct ScalarKernel : public Kernel {
|
||||
ScalarKernel() = default;
|
||||
|
||||
ScalarKernel(std::shared_ptr<KernelSignature> sig, ArrayKernelExec exec,
|
||||
KernelInit init = NULLPTR)
|
||||
: Kernel(std::move(sig), init), exec(exec) {}
|
||||
|
||||
ScalarKernel(std::vector<InputType> in_types, OutputType out_type, ArrayKernelExec exec,
|
||||
KernelInit init = NULLPTR)
|
||||
: Kernel(std::move(in_types), std::move(out_type), std::move(init)), exec(exec) {}
|
||||
|
||||
/// \brief Perform a single invocation of this kernel. Depending on the
|
||||
/// implementation, it may only write into preallocated memory, while in some
|
||||
/// cases it will allocate its own memory. Any required state is managed
|
||||
/// through the KernelContext.
|
||||
ArrayKernelExec exec;
|
||||
|
||||
/// \brief Writing execution results into larger contiguous allocations
|
||||
/// requires that the kernel be able to write into sliced output ArrayData*,
|
||||
/// including sliced output validity bitmaps. Some kernel implementations may
|
||||
/// not be able to do this, so setting this to false disables this
|
||||
/// functionality.
|
||||
bool can_write_into_slices = true;
|
||||
|
||||
// For scalar functions preallocated data and intersecting arg validity
|
||||
// bitmaps is a reasonable default
|
||||
NullHandling::type null_handling = NullHandling::INTERSECTION;
|
||||
MemAllocation::type mem_allocation = MemAllocation::PREALLOCATE;
|
||||
};
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// VectorKernel (for VectorFunction)
|
||||
|
||||
/// \brief Kernel data structure for implementations of VectorFunction. In
|
||||
/// contains an optional finalizer function, the null handling and memory
|
||||
/// pre-allocation preferences (which have different defaults from
|
||||
/// ScalarKernel), and some other execution-related options.
|
||||
struct VectorKernel : public Kernel {
|
||||
/// \brief See VectorKernel::finalize member for usage
|
||||
using FinalizeFunc = std::function<Status(KernelContext*, std::vector<Datum>*)>;
|
||||
|
||||
/// \brief Function for executing a stateful VectorKernel against a
|
||||
/// ChunkedArray input. Does not need to be defined for all VectorKernels
|
||||
using ChunkedExec = Status (*)(KernelContext*, const ExecBatch&, Datum* out);
|
||||
|
||||
VectorKernel() = default;
|
||||
|
||||
VectorKernel(std::vector<InputType> in_types, OutputType out_type, ArrayKernelExec exec,
|
||||
KernelInit init = NULLPTR, FinalizeFunc finalize = NULLPTR)
|
||||
: Kernel(std::move(in_types), std::move(out_type), std::move(init)),
|
||||
exec(exec),
|
||||
finalize(std::move(finalize)) {}
|
||||
|
||||
VectorKernel(std::shared_ptr<KernelSignature> sig, ArrayKernelExec exec,
|
||||
KernelInit init = NULLPTR, FinalizeFunc finalize = NULLPTR)
|
||||
: Kernel(std::move(sig), std::move(init)),
|
||||
exec(exec),
|
||||
finalize(std::move(finalize)) {}
|
||||
|
||||
/// \brief Perform a single invocation of this kernel. Any required state is
|
||||
/// managed through the KernelContext.
|
||||
ArrayKernelExec exec;
|
||||
|
||||
/// \brief Execute the kernel on a ChunkedArray. Does not need to be defined
|
||||
ChunkedExec exec_chunked = NULLPTR;
|
||||
|
||||
/// \brief For VectorKernel, convert intermediate results into finalized
|
||||
/// results. Mutates input argument. Some kernels may accumulate state
|
||||
/// (example: hashing-related functions) through processing chunked inputs, and
|
||||
/// then need to attach some accumulated state to each of the outputs of
|
||||
/// processing each chunk of data.
|
||||
FinalizeFunc finalize;
|
||||
|
||||
/// Since vector kernels generally are implemented rather differently from
|
||||
/// scalar/elementwise kernels (and they may not even yield arrays of the same
|
||||
/// size), so we make the developer opt-in to any memory preallocation rather
|
||||
/// than having to turn it off.
|
||||
NullHandling::type null_handling = NullHandling::COMPUTED_NO_PREALLOCATE;
|
||||
MemAllocation::type mem_allocation = MemAllocation::NO_PREALLOCATE;
|
||||
|
||||
/// \brief Writing execution results into larger contiguous allocations
|
||||
/// requires that the kernel be able to write into sliced output ArrayData*,
|
||||
/// including sliced output validity bitmaps. Some kernel implementations may
|
||||
/// not be able to do this, so setting this to false disables this
|
||||
/// functionality.
|
||||
bool can_write_into_slices = true;
|
||||
|
||||
/// Some vector kernels can do chunkwise execution using ExecSpanIterator,
|
||||
/// in some cases accumulating some state. Other kernels (like Take) need to
|
||||
/// be passed whole arrays and don't work on ChunkedArray inputs
|
||||
bool can_execute_chunkwise = true;
|
||||
|
||||
/// Some kernels (like unique and value_counts) yield non-chunked output from
|
||||
/// chunked-array inputs. This option controls how the results are boxed when
|
||||
/// returned from ExecVectorFunction
|
||||
///
|
||||
/// true -> ChunkedArray
|
||||
/// false -> Array
|
||||
bool output_chunked = true;
|
||||
};
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// ScalarAggregateKernel (for ScalarAggregateFunction)
|
||||
|
||||
using ScalarAggregateConsume = Status (*)(KernelContext*, const ExecSpan&);
|
||||
using ScalarAggregateMerge = Status (*)(KernelContext*, KernelState&&, KernelState*);
|
||||
// Finalize returns Datum to permit multiple return values
|
||||
using ScalarAggregateFinalize = Status (*)(KernelContext*, Datum*);
|
||||
|
||||
/// \brief Kernel data structure for implementations of
|
||||
/// ScalarAggregateFunction. The four necessary components of an aggregation
|
||||
/// kernel are the init, consume, merge, and finalize functions.
|
||||
///
|
||||
/// * init: creates a new KernelState for a kernel.
|
||||
/// * consume: processes an ExecSpan and updates the KernelState found in the
|
||||
/// KernelContext.
|
||||
/// * merge: combines one KernelState with another.
|
||||
/// * finalize: produces the end result of the aggregation using the
|
||||
/// KernelState in the KernelContext.
|
||||
struct ScalarAggregateKernel : public Kernel {
|
||||
ScalarAggregateKernel() = default;
|
||||
|
||||
ScalarAggregateKernel(std::shared_ptr<KernelSignature> sig, KernelInit init,
|
||||
ScalarAggregateConsume consume, ScalarAggregateMerge merge,
|
||||
ScalarAggregateFinalize finalize)
|
||||
: Kernel(std::move(sig), std::move(init)),
|
||||
consume(consume),
|
||||
merge(merge),
|
||||
finalize(finalize) {}
|
||||
|
||||
ScalarAggregateKernel(std::vector<InputType> in_types, OutputType out_type,
|
||||
KernelInit init, ScalarAggregateConsume consume,
|
||||
ScalarAggregateMerge merge, ScalarAggregateFinalize finalize)
|
||||
: ScalarAggregateKernel(
|
||||
KernelSignature::Make(std::move(in_types), std::move(out_type)),
|
||||
std::move(init), consume, merge, finalize) {}
|
||||
|
||||
/// \brief Merge a vector of KernelStates into a single KernelState.
|
||||
/// The merged state will be returned and will be set on the KernelContext.
|
||||
static Result<std::unique_ptr<KernelState>> MergeAll(
|
||||
const ScalarAggregateKernel* kernel, KernelContext* ctx,
|
||||
std::vector<std::unique_ptr<KernelState>> states);
|
||||
|
||||
ScalarAggregateConsume consume;
|
||||
ScalarAggregateMerge merge;
|
||||
ScalarAggregateFinalize finalize;
|
||||
};
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// HashAggregateKernel (for HashAggregateFunction)
|
||||
|
||||
using HashAggregateResize = Status (*)(KernelContext*, int64_t);
|
||||
using HashAggregateConsume = Status (*)(KernelContext*, const ExecSpan&);
|
||||
using HashAggregateMerge = Status (*)(KernelContext*, KernelState&&, const ArrayData&);
|
||||
|
||||
// Finalize returns Datum to permit multiple return values
|
||||
using HashAggregateFinalize = Status (*)(KernelContext*, Datum*);
|
||||
|
||||
/// \brief Kernel data structure for implementations of
|
||||
/// HashAggregateFunction. The four necessary components of an aggregation
|
||||
/// kernel are the init, consume, merge, and finalize functions.
|
||||
///
|
||||
/// * init: creates a new KernelState for a kernel.
|
||||
/// * resize: ensure that the KernelState can accommodate the specified number of groups.
|
||||
/// * consume: processes an ExecSpan (which includes the argument as well
|
||||
/// as an array of group identifiers) and updates the KernelState found in the
|
||||
/// KernelContext.
|
||||
/// * merge: combines one KernelState with another.
|
||||
/// * finalize: produces the end result of the aggregation using the
|
||||
/// KernelState in the KernelContext.
|
||||
struct HashAggregateKernel : public Kernel {
|
||||
HashAggregateKernel() = default;
|
||||
|
||||
HashAggregateKernel(std::shared_ptr<KernelSignature> sig, KernelInit init,
|
||||
HashAggregateResize resize, HashAggregateConsume consume,
|
||||
HashAggregateMerge merge, HashAggregateFinalize finalize)
|
||||
: Kernel(std::move(sig), std::move(init)),
|
||||
resize(resize),
|
||||
consume(consume),
|
||||
merge(merge),
|
||||
finalize(finalize) {}
|
||||
|
||||
HashAggregateKernel(std::vector<InputType> in_types, OutputType out_type,
|
||||
KernelInit init, HashAggregateConsume consume,
|
||||
HashAggregateResize resize, HashAggregateMerge merge,
|
||||
HashAggregateFinalize finalize)
|
||||
: HashAggregateKernel(
|
||||
KernelSignature::Make(std::move(in_types), std::move(out_type)),
|
||||
std::move(init), resize, consume, merge, finalize) {}
|
||||
|
||||
HashAggregateResize resize;
|
||||
HashAggregateConsume consume;
|
||||
HashAggregateMerge merge;
|
||||
HashAggregateFinalize finalize;
|
||||
};
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,425 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#include "arrow/array.h"
|
||||
#include "arrow/compute/exec.h"
|
||||
#include "arrow/compute/exec/util.h"
|
||||
#include "arrow/type.h"
|
||||
#include "arrow/util/cpu_info.h"
|
||||
#include "arrow/util/logging.h"
|
||||
|
||||
/// This file contains lightweight containers for Arrow buffers. These containers
|
||||
/// makes compromises in terms of strong ownership and the range of data types supported
|
||||
/// in order to gain performance and reduced overhead.
|
||||
|
||||
namespace arrow {
|
||||
namespace compute {
|
||||
|
||||
/// \brief Context needed by various execution engine operations
|
||||
///
|
||||
/// In the execution engine this context is provided by either the node or the
|
||||
/// plan and the context exists for the lifetime of the plan. Defining this here
|
||||
/// allows us to take advantage of these resources without coupling the logic with
|
||||
/// the execution engine.
|
||||
struct LightContext {
|
||||
bool has_avx2() const { return (hardware_flags & arrow::internal::CpuInfo::AVX2) > 0; }
|
||||
int64_t hardware_flags;
|
||||
util::TempVectorStack* stack;
|
||||
};
|
||||
|
||||
/// \brief Description of the layout of a "key" column
|
||||
///
|
||||
/// A "key" column is a non-nested, non-union column.
|
||||
/// Every key column has either 0 (null), 2 (e.g. int32) or 3 (e.g. string) buffers
|
||||
/// and no children.
|
||||
///
|
||||
/// This metadata object is a zero-allocation analogue of arrow::DataType
|
||||
struct ARROW_EXPORT KeyColumnMetadata {
|
||||
KeyColumnMetadata() = default;
|
||||
KeyColumnMetadata(bool is_fixed_length_in, uint32_t fixed_length_in,
|
||||
bool is_null_type_in = false)
|
||||
: is_fixed_length(is_fixed_length_in),
|
||||
is_null_type(is_null_type_in),
|
||||
fixed_length(fixed_length_in) {}
|
||||
/// \brief True if the column is not a varying-length binary type
|
||||
///
|
||||
/// If this is true the column will have a validity buffer and
|
||||
/// a data buffer and the third buffer will be unused.
|
||||
bool is_fixed_length;
|
||||
/// \brief True if this column is the null type
|
||||
bool is_null_type;
|
||||
/// \brief The number of bytes for each item
|
||||
///
|
||||
/// Zero has a special meaning, indicating a bit vector with one bit per value if it
|
||||
/// isn't a null type column.
|
||||
///
|
||||
/// For a varying-length binary column this represents the number of bytes per offset.
|
||||
uint32_t fixed_length;
|
||||
};
|
||||
|
||||
/// \brief A lightweight view into a "key" array
|
||||
///
|
||||
/// A "key" column is a non-nested, non-union column \see KeyColumnMetadata
|
||||
///
|
||||
/// This metadata object is a zero-allocation analogue of arrow::ArrayData
|
||||
class ARROW_EXPORT KeyColumnArray {
|
||||
public:
|
||||
/// \brief Create an uninitialized KeyColumnArray
|
||||
KeyColumnArray() = default;
|
||||
/// \brief Create a read-only view from buffers
|
||||
///
|
||||
/// This is a view only and does not take ownership of the buffers. The lifetime
|
||||
/// of the buffers must exceed the lifetime of this view
|
||||
KeyColumnArray(const KeyColumnMetadata& metadata, int64_t length,
|
||||
const uint8_t* validity_buffer, const uint8_t* fixed_length_buffer,
|
||||
const uint8_t* var_length_buffer, int bit_offset_validity = 0,
|
||||
int bit_offset_fixed = 0);
|
||||
/// \brief Create a mutable view from buffers
|
||||
///
|
||||
/// This is a view only and does not take ownership of the buffers. The lifetime
|
||||
/// of the buffers must exceed the lifetime of this view
|
||||
KeyColumnArray(const KeyColumnMetadata& metadata, int64_t length,
|
||||
uint8_t* validity_buffer, uint8_t* fixed_length_buffer,
|
||||
uint8_t* var_length_buffer, int bit_offset_validity = 0,
|
||||
int bit_offset_fixed = 0);
|
||||
/// \brief Create a sliced view of `this`
|
||||
///
|
||||
/// The number of rows used in offset must be divisible by 8
|
||||
/// in order to not split bit vectors within a single byte.
|
||||
KeyColumnArray Slice(int64_t offset, int64_t length) const;
|
||||
/// \brief Create a copy of `this` with a buffer from `other`
|
||||
///
|
||||
/// The copy will be identical to `this` except the buffer at buffer_id_to_replace
|
||||
/// will be replaced by the corresponding buffer in `other`.
|
||||
KeyColumnArray WithBufferFrom(const KeyColumnArray& other,
|
||||
int buffer_id_to_replace) const;
|
||||
|
||||
/// \brief Create a copy of `this` with new metadata
|
||||
KeyColumnArray WithMetadata(const KeyColumnMetadata& metadata) const;
|
||||
|
||||
// Constants used for accessing buffers using data() and mutable_data().
|
||||
static constexpr int kValidityBuffer = 0;
|
||||
static constexpr int kFixedLengthBuffer = 1;
|
||||
static constexpr int kVariableLengthBuffer = 2;
|
||||
|
||||
/// \brief Return one of the underlying mutable buffers
|
||||
uint8_t* mutable_data(int i) {
|
||||
ARROW_DCHECK(i >= 0 && i <= kMaxBuffers);
|
||||
return mutable_buffers_[i];
|
||||
}
|
||||
/// \brief Return one of the underlying read-only buffers
|
||||
const uint8_t* data(int i) const {
|
||||
ARROW_DCHECK(i >= 0 && i <= kMaxBuffers);
|
||||
return buffers_[i];
|
||||
}
|
||||
/// \brief Return a mutable version of the offsets buffer
|
||||
///
|
||||
/// Only valid if this is a view into a varbinary type
|
||||
uint32_t* mutable_offsets() {
|
||||
DCHECK(!metadata_.is_fixed_length);
|
||||
DCHECK_EQ(metadata_.fixed_length, sizeof(uint32_t));
|
||||
return reinterpret_cast<uint32_t*>(mutable_data(kFixedLengthBuffer));
|
||||
}
|
||||
/// \brief Return a read-only version of the offsets buffer
|
||||
///
|
||||
/// Only valid if this is a view into a varbinary type
|
||||
const uint32_t* offsets() const {
|
||||
DCHECK(!metadata_.is_fixed_length);
|
||||
DCHECK_EQ(metadata_.fixed_length, sizeof(uint32_t));
|
||||
return reinterpret_cast<const uint32_t*>(data(kFixedLengthBuffer));
|
||||
}
|
||||
/// \brief Return a mutable version of the large-offsets buffer
|
||||
///
|
||||
/// Only valid if this is a view into a large varbinary type
|
||||
uint64_t* mutable_large_offsets() {
|
||||
DCHECK(!metadata_.is_fixed_length);
|
||||
DCHECK_EQ(metadata_.fixed_length, sizeof(uint64_t));
|
||||
return reinterpret_cast<uint64_t*>(mutable_data(kFixedLengthBuffer));
|
||||
}
|
||||
/// \brief Return a read-only version of the large-offsets buffer
|
||||
///
|
||||
/// Only valid if this is a view into a large varbinary type
|
||||
const uint64_t* large_offsets() const {
|
||||
DCHECK(!metadata_.is_fixed_length);
|
||||
DCHECK_EQ(metadata_.fixed_length, sizeof(uint64_t));
|
||||
return reinterpret_cast<const uint64_t*>(data(kFixedLengthBuffer));
|
||||
}
|
||||
/// \brief Return the type metadata
|
||||
const KeyColumnMetadata& metadata() const { return metadata_; }
|
||||
/// \brief Return the length (in rows) of the array
|
||||
int64_t length() const { return length_; }
|
||||
/// \brief Return the bit offset into the corresponding vector
|
||||
///
|
||||
/// if i == 1 then this must be a bool array
|
||||
int bit_offset(int i) const {
|
||||
ARROW_DCHECK(i >= 0 && i < kMaxBuffers);
|
||||
return bit_offset_[i];
|
||||
}
|
||||
|
||||
private:
|
||||
static constexpr int kMaxBuffers = 3;
|
||||
const uint8_t* buffers_[kMaxBuffers];
|
||||
uint8_t* mutable_buffers_[kMaxBuffers];
|
||||
KeyColumnMetadata metadata_;
|
||||
int64_t length_;
|
||||
// Starting bit offset within the first byte (between 0 and 7)
|
||||
// to be used when accessing buffers that store bit vectors.
|
||||
int bit_offset_[kMaxBuffers - 1];
|
||||
};
|
||||
|
||||
/// \brief Create KeyColumnMetadata from a DataType
|
||||
///
|
||||
/// If `type` is a dictionary type then this will return the KeyColumnMetadata for
|
||||
/// the indices type
|
||||
///
|
||||
/// This should only be called on "key" columns. Calling this with
|
||||
/// a non-key column will return Status::TypeError.
|
||||
ARROW_EXPORT Result<KeyColumnMetadata> ColumnMetadataFromDataType(
|
||||
const std::shared_ptr<DataType>& type);
|
||||
|
||||
/// \brief Create KeyColumnArray from ArrayData
|
||||
///
|
||||
/// If `type` is a dictionary type then this will return the KeyColumnArray for
|
||||
/// the indices array
|
||||
///
|
||||
/// The caller should ensure this is only called on "key" columns.
|
||||
/// \see ColumnMetadataFromDataType for details
|
||||
ARROW_EXPORT Result<KeyColumnArray> ColumnArrayFromArrayData(
|
||||
const std::shared_ptr<ArrayData>& array_data, int64_t start_row, int64_t num_rows);
|
||||
|
||||
/// \brief Create KeyColumnArray from ArrayData and KeyColumnMetadata
|
||||
///
|
||||
/// If `type` is a dictionary type then this will return the KeyColumnArray for
|
||||
/// the indices array
|
||||
///
|
||||
/// The caller should ensure this is only called on "key" columns.
|
||||
/// \see ColumnMetadataFromDataType for details
|
||||
ARROW_EXPORT KeyColumnArray ColumnArrayFromArrayDataAndMetadata(
|
||||
const std::shared_ptr<ArrayData>& array_data, const KeyColumnMetadata& metadata,
|
||||
int64_t start_row, int64_t num_rows);
|
||||
|
||||
/// \brief Create KeyColumnMetadata instances from an ExecBatch
|
||||
///
|
||||
/// column_metadatas will be resized to fit
|
||||
///
|
||||
/// All columns in `batch` must be eligible "key" columns and have an array shape
|
||||
/// \see ColumnMetadataFromDataType for more details
|
||||
ARROW_EXPORT Status ColumnMetadatasFromExecBatch(
|
||||
const ExecBatch& batch, std::vector<KeyColumnMetadata>* column_metadatas);
|
||||
|
||||
/// \brief Create KeyColumnArray instances from a slice of an ExecBatch
|
||||
///
|
||||
/// column_arrays will be resized to fit
|
||||
///
|
||||
/// All columns in `batch` must be eligible "key" columns and have an array shape
|
||||
/// \see ColumnArrayFromArrayData for more details
|
||||
ARROW_EXPORT Status ColumnArraysFromExecBatch(const ExecBatch& batch, int64_t start_row,
|
||||
int64_t num_rows,
|
||||
std::vector<KeyColumnArray>* column_arrays);
|
||||
|
||||
/// \brief Create KeyColumnArray instances from an ExecBatch
|
||||
///
|
||||
/// column_arrays will be resized to fit
|
||||
///
|
||||
/// All columns in `batch` must be eligible "key" columns and have an array shape
|
||||
/// \see ColumnArrayFromArrayData for more details
|
||||
ARROW_EXPORT Status ColumnArraysFromExecBatch(const ExecBatch& batch,
|
||||
std::vector<KeyColumnArray>* column_arrays);
|
||||
|
||||
/// A lightweight resizable array for "key" columns
|
||||
///
|
||||
/// Unlike KeyColumnArray this instance owns its buffers
|
||||
///
|
||||
/// Resizing is handled by arrow::ResizableBuffer and a doubling approach is
|
||||
/// used so that resizes will always grow up to the next power of 2
|
||||
class ARROW_EXPORT ResizableArrayData {
|
||||
public:
|
||||
/// \brief Create an uninitialized instance
|
||||
///
|
||||
/// Init must be called before calling any other operations
|
||||
ResizableArrayData()
|
||||
: log_num_rows_min_(0),
|
||||
pool_(NULLPTR),
|
||||
num_rows_(0),
|
||||
num_rows_allocated_(0),
|
||||
var_len_buf_size_(0) {}
|
||||
|
||||
~ResizableArrayData() { Clear(true); }
|
||||
|
||||
/// \brief Initialize the array
|
||||
/// \param data_type The data type this array is holding data for.
|
||||
/// \param pool The pool to make allocations on
|
||||
/// \param log_num_rows_min All resize operations will allocate at least enough
|
||||
/// space for (1 << log_num_rows_min) rows
|
||||
void Init(const std::shared_ptr<DataType>& data_type, MemoryPool* pool,
|
||||
int log_num_rows_min);
|
||||
|
||||
/// \brief Resets the array back to an empty state
|
||||
/// \param release_buffers If true then allocated memory is released and the
|
||||
/// next resize operation will have to reallocate memory
|
||||
void Clear(bool release_buffers);
|
||||
|
||||
/// \brief Resize the fixed length buffers
|
||||
///
|
||||
/// The buffers will be resized to hold at least `num_rows_new` rows of data
|
||||
Status ResizeFixedLengthBuffers(int num_rows_new);
|
||||
|
||||
/// \brief Resize the varying length buffer if this array is a variable binary type
|
||||
///
|
||||
/// This must be called after offsets have been populated and the buffer will be
|
||||
/// resized to hold at least as much data as the offsets require
|
||||
///
|
||||
/// Does nothing if the array is not a variable binary type
|
||||
Status ResizeVaryingLengthBuffer();
|
||||
|
||||
/// \brief The current length (in rows) of the array
|
||||
int num_rows() const { return num_rows_; }
|
||||
|
||||
/// \brief A non-owning view into this array
|
||||
KeyColumnArray column_array() const;
|
||||
|
||||
/// \brief A lightweight descriptor of the data held by this array
|
||||
Result<KeyColumnMetadata> column_metadata() const {
|
||||
return ColumnMetadataFromDataType(data_type_);
|
||||
}
|
||||
|
||||
/// \brief Convert the data to an arrow::ArrayData
|
||||
///
|
||||
/// This is a zero copy operation and the created ArrayData will reference the
|
||||
/// buffers held by this instance.
|
||||
std::shared_ptr<ArrayData> array_data() const;
|
||||
|
||||
// Constants used for accessing buffers using mutable_data().
|
||||
static constexpr int kValidityBuffer = 0;
|
||||
static constexpr int kFixedLengthBuffer = 1;
|
||||
static constexpr int kVariableLengthBuffer = 2;
|
||||
|
||||
/// \brief A raw pointer to the requested buffer
|
||||
///
|
||||
/// If i is 0 (kValidityBuffer) then this returns the validity buffer
|
||||
/// If i is 1 (kFixedLengthBuffer) then this returns the buffer used for values (if this
|
||||
/// is a fixed
|
||||
/// length data type) or offsets (if this is a variable binary type)
|
||||
/// If i is 2 (kVariableLengthBuffer) then this returns the buffer used for variable
|
||||
/// length binary data
|
||||
uint8_t* mutable_data(int i) { return buffers_[i]->mutable_data(); }
|
||||
|
||||
private:
|
||||
static constexpr int64_t kNumPaddingBytes = 64;
|
||||
int log_num_rows_min_;
|
||||
std::shared_ptr<DataType> data_type_;
|
||||
MemoryPool* pool_;
|
||||
int num_rows_;
|
||||
int num_rows_allocated_;
|
||||
int var_len_buf_size_;
|
||||
static constexpr int kMaxBuffers = 3;
|
||||
std::shared_ptr<ResizableBuffer> buffers_[kMaxBuffers];
|
||||
};
|
||||
|
||||
/// \brief A builder to concatenate batches of data into a larger batch
|
||||
///
|
||||
/// Will only store num_rows_max() rows
|
||||
class ARROW_EXPORT ExecBatchBuilder {
|
||||
public:
|
||||
/// \brief Add rows from `source` into `target` column
|
||||
///
|
||||
/// If `target` is uninitialized or cleared it will be initialized to use
|
||||
/// the given pool.
|
||||
static Status AppendSelected(const std::shared_ptr<ArrayData>& source,
|
||||
ResizableArrayData* target, int num_rows_to_append,
|
||||
const uint16_t* row_ids, MemoryPool* pool);
|
||||
|
||||
/// \brief Add nulls into `target` column
|
||||
///
|
||||
/// If `target` is uninitialized or cleared it will be initialized to use
|
||||
/// the given pool.
|
||||
static Status AppendNulls(const std::shared_ptr<DataType>& type,
|
||||
ResizableArrayData& target, int num_rows_to_append,
|
||||
MemoryPool* pool);
|
||||
|
||||
/// \brief Add selected rows from `batch`
|
||||
///
|
||||
/// If `col_ids` is null then `num_cols` should less than batch.num_values() and
|
||||
/// the first `num_cols` columns of batch will be appended.
|
||||
///
|
||||
/// All columns in `batch` must have array shape
|
||||
Status AppendSelected(MemoryPool* pool, const ExecBatch& batch, int num_rows_to_append,
|
||||
const uint16_t* row_ids, int num_cols,
|
||||
const int* col_ids = NULLPTR);
|
||||
|
||||
/// \brief Add all-null rows
|
||||
Status AppendNulls(MemoryPool* pool,
|
||||
const std::vector<std::shared_ptr<DataType>>& types,
|
||||
int num_rows_to_append);
|
||||
|
||||
/// \brief Create an ExecBatch with the data that has been appended so far
|
||||
/// and clear this builder to be used again
|
||||
///
|
||||
/// Should only be called if num_rows() returns non-zero.
|
||||
ExecBatch Flush();
|
||||
|
||||
int num_rows() const { return values_.empty() ? 0 : values_[0].num_rows(); }
|
||||
|
||||
static int num_rows_max() { return 1 << kLogNumRows; }
|
||||
|
||||
private:
|
||||
static constexpr int kLogNumRows = 15;
|
||||
|
||||
// Calculate how many rows to skip from the tail of the
|
||||
// sequence of selected rows, such that the total size of skipped rows is at
|
||||
// least equal to the size specified by the caller.
|
||||
//
|
||||
// Skipping of the tail rows
|
||||
// is used to allow for faster processing by the caller of remaining rows
|
||||
// without checking buffer bounds (useful with SIMD or fixed size memory loads
|
||||
// and stores).
|
||||
//
|
||||
// The sequence of row_ids provided must be non-decreasing.
|
||||
//
|
||||
static int NumRowsToSkip(const std::shared_ptr<ArrayData>& column, int num_rows,
|
||||
const uint16_t* row_ids, int num_tail_bytes_to_skip);
|
||||
|
||||
// The supplied lambda will be called for each row in the given list of rows.
|
||||
// The arguments given to it will be:
|
||||
// - index of a row (within the set of selected rows),
|
||||
// - pointer to the value,
|
||||
// - byte length of the value.
|
||||
//
|
||||
// The information about nulls (validity bitmap) is not used in this call and
|
||||
// has to be processed separately.
|
||||
//
|
||||
template <class PROCESS_VALUE_FN>
|
||||
static void Visit(const std::shared_ptr<ArrayData>& column, int num_rows,
|
||||
const uint16_t* row_ids, PROCESS_VALUE_FN process_value_fn);
|
||||
|
||||
template <bool OUTPUT_BYTE_ALIGNED>
|
||||
static void CollectBitsImp(const uint8_t* input_bits, int64_t input_bits_offset,
|
||||
uint8_t* output_bits, int64_t output_bits_offset,
|
||||
int num_rows, const uint16_t* row_ids);
|
||||
static void CollectBits(const uint8_t* input_bits, int64_t input_bits_offset,
|
||||
uint8_t* output_bits, int64_t output_bits_offset, int num_rows,
|
||||
const uint16_t* row_ids);
|
||||
|
||||
std::vector<ResizableArrayData> values_;
|
||||
};
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,124 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// NOTE: API is EXPERIMENTAL and will change without going through a
|
||||
// deprecation cycle
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace compute {
|
||||
|
||||
class Function;
|
||||
class FunctionOptionsType;
|
||||
|
||||
/// \brief A mutable central function registry for built-in functions as well
|
||||
/// as user-defined functions. Functions are implementations of
|
||||
/// arrow::compute::Function.
|
||||
///
|
||||
/// Generally, each function contains kernels which are implementations of a
|
||||
/// function for a specific argument signature. After looking up a function in
|
||||
/// the registry, one can either execute it eagerly with Function::Execute or
|
||||
/// use one of the function's dispatch methods to pick a suitable kernel for
|
||||
/// lower-level function execution.
|
||||
class ARROW_EXPORT FunctionRegistry {
|
||||
public:
|
||||
~FunctionRegistry();
|
||||
|
||||
/// \brief Construct a new registry.
|
||||
///
|
||||
/// Most users only need to use the global registry.
|
||||
static std::unique_ptr<FunctionRegistry> Make();
|
||||
|
||||
/// \brief Construct a new nested registry with the given parent.
|
||||
///
|
||||
/// Most users only need to use the global registry. The returned registry never changes
|
||||
/// its parent, even when an operation allows overwritting.
|
||||
static std::unique_ptr<FunctionRegistry> Make(FunctionRegistry* parent);
|
||||
|
||||
/// \brief Check whether a new function can be added to the registry.
|
||||
///
|
||||
/// \returns Status::KeyError if a function with the same name is already registered.
|
||||
Status CanAddFunction(std::shared_ptr<Function> function, bool allow_overwrite = false);
|
||||
|
||||
/// \brief Add a new function to the registry.
|
||||
///
|
||||
/// \returns Status::KeyError if a function with the same name is already registered.
|
||||
Status AddFunction(std::shared_ptr<Function> function, bool allow_overwrite = false);
|
||||
|
||||
/// \brief Check whether an alias can be added for the given function name.
|
||||
///
|
||||
/// \returns Status::KeyError if the function with the given name is not registered.
|
||||
Status CanAddAlias(const std::string& target_name, const std::string& source_name);
|
||||
|
||||
/// \brief Add alias for the given function name.
|
||||
///
|
||||
/// \returns Status::KeyError if the function with the given name is not registered.
|
||||
Status AddAlias(const std::string& target_name, const std::string& source_name);
|
||||
|
||||
/// \brief Check whether a new function options type can be added to the registry.
|
||||
///
|
||||
/// \return Status::KeyError if a function options type with the same name is already
|
||||
/// registered.
|
||||
Status CanAddFunctionOptionsType(const FunctionOptionsType* options_type,
|
||||
bool allow_overwrite = false);
|
||||
|
||||
/// \brief Add a new function options type to the registry.
|
||||
///
|
||||
/// \returns Status::KeyError if a function options type with the same name is already
|
||||
/// registered.
|
||||
Status AddFunctionOptionsType(const FunctionOptionsType* options_type,
|
||||
bool allow_overwrite = false);
|
||||
|
||||
/// \brief Retrieve a function by name from the registry.
|
||||
Result<std::shared_ptr<Function>> GetFunction(const std::string& name) const;
|
||||
|
||||
/// \brief Return vector of all entry names in the registry.
|
||||
///
|
||||
/// Helpful for displaying a manifest of available functions.
|
||||
std::vector<std::string> GetFunctionNames() const;
|
||||
|
||||
/// \brief Retrieve a function options type by name from the registry.
|
||||
Result<const FunctionOptionsType*> GetFunctionOptionsType(
|
||||
const std::string& name) const;
|
||||
|
||||
/// \brief The number of currently registered functions.
|
||||
int num_functions() const;
|
||||
|
||||
private:
|
||||
FunctionRegistry();
|
||||
|
||||
// Use PIMPL pattern to not have std::unordered_map here
|
||||
class FunctionRegistryImpl;
|
||||
std::unique_ptr<FunctionRegistryImpl> impl_;
|
||||
|
||||
explicit FunctionRegistry(FunctionRegistryImpl* impl);
|
||||
};
|
||||
|
||||
/// \brief Return the process-global function registry.
|
||||
ARROW_EXPORT FunctionRegistry* GetFunctionRegistry();
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,112 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/compute/exec.h"
|
||||
#include "arrow/compute/exec/options.h"
|
||||
#include "arrow/compute/kernel.h"
|
||||
#include "arrow/datum.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace compute {
|
||||
|
||||
/// Consumes batches of keys and yields batches of the group ids.
|
||||
class ARROW_EXPORT Grouper {
|
||||
public:
|
||||
virtual ~Grouper() = default;
|
||||
|
||||
/// Construct a Grouper which receives the specified key types
|
||||
static Result<std::unique_ptr<Grouper>> Make(const std::vector<TypeHolder>& key_types,
|
||||
ExecContext* ctx = default_exec_context());
|
||||
|
||||
/// Consume a batch of keys, producing the corresponding group ids as an integer array.
|
||||
/// Currently only uint32 indices will be produced, eventually the bit width will only
|
||||
/// be as wide as necessary.
|
||||
virtual Result<Datum> Consume(const ExecSpan& batch) = 0;
|
||||
|
||||
/// Get current unique keys. May be called multiple times.
|
||||
virtual Result<ExecBatch> GetUniques() = 0;
|
||||
|
||||
/// Get the current number of groups.
|
||||
virtual uint32_t num_groups() const = 0;
|
||||
|
||||
/// \brief Assemble lists of indices of identical elements.
|
||||
///
|
||||
/// \param[in] ids An unsigned, all-valid integral array which will be
|
||||
/// used as grouping criteria.
|
||||
/// \param[in] num_groups An upper bound for the elements of ids
|
||||
/// \param[in] ctx Execution context to use during the operation
|
||||
/// \return A num_groups-long ListArray where the slot at i contains a
|
||||
/// list of indices where i appears in ids.
|
||||
///
|
||||
/// MakeGroupings([
|
||||
/// 2,
|
||||
/// 2,
|
||||
/// 5,
|
||||
/// 5,
|
||||
/// 2,
|
||||
/// 3
|
||||
/// ], 8) == [
|
||||
/// [],
|
||||
/// [],
|
||||
/// [0, 1, 4],
|
||||
/// [5],
|
||||
/// [],
|
||||
/// [2, 3],
|
||||
/// [],
|
||||
/// []
|
||||
/// ]
|
||||
static Result<std::shared_ptr<ListArray>> MakeGroupings(
|
||||
const UInt32Array& ids, uint32_t num_groups,
|
||||
ExecContext* ctx = default_exec_context());
|
||||
|
||||
/// \brief Produce a ListArray whose slots are selections of `array` which correspond to
|
||||
/// the provided groupings.
|
||||
///
|
||||
/// For example,
|
||||
/// ApplyGroupings([
|
||||
/// [],
|
||||
/// [],
|
||||
/// [0, 1, 4],
|
||||
/// [5],
|
||||
/// [],
|
||||
/// [2, 3],
|
||||
/// [],
|
||||
/// []
|
||||
/// ], [2, 2, 5, 5, 2, 3]) == [
|
||||
/// [],
|
||||
/// [],
|
||||
/// [2, 2, 2],
|
||||
/// [3],
|
||||
/// [],
|
||||
/// [5, 5],
|
||||
/// [],
|
||||
/// []
|
||||
/// ]
|
||||
static Result<std::shared_ptr<ListArray>> ApplyGroupings(
|
||||
const ListArray& groupings, const Array& array,
|
||||
ExecContext* ctx = default_exec_context());
|
||||
};
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,62 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
struct Datum;
|
||||
struct TypeHolder;
|
||||
|
||||
namespace compute {
|
||||
|
||||
class Function;
|
||||
class FunctionExecutor;
|
||||
class FunctionOptions;
|
||||
class FunctionRegistry;
|
||||
|
||||
class CastOptions;
|
||||
|
||||
struct ExecBatch;
|
||||
class ExecContext;
|
||||
class KernelContext;
|
||||
|
||||
struct Kernel;
|
||||
struct ScalarKernel;
|
||||
struct ScalarAggregateKernel;
|
||||
struct VectorKernel;
|
||||
|
||||
struct KernelState;
|
||||
|
||||
struct Declaration;
|
||||
class Expression;
|
||||
class ExecNode;
|
||||
class ExecPlan;
|
||||
class ExecNodeOptions;
|
||||
class ExecFactoryRegistry;
|
||||
class QueryContext;
|
||||
struct QueryOptions;
|
||||
|
||||
class SinkNodeConsumer;
|
||||
|
||||
ARROW_EXPORT ExecContext* default_exec_context();
|
||||
ARROW_EXPORT ExecContext* threaded_exec_context();
|
||||
|
||||
} // namespace compute
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,98 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <optional>
|
||||
#include <string>
|
||||
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/util/config.h" // IWYU pragma: export
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
struct BuildInfo {
|
||||
/// The packed version number, e.g. 1002003 (decimal) for Arrow 1.2.3
|
||||
int version;
|
||||
/// The "major" version number, e.g. 1 for Arrow 1.2.3
|
||||
int version_major;
|
||||
/// The "minor" version number, e.g. 2 for Arrow 1.2.3
|
||||
int version_minor;
|
||||
/// The "patch" version number, e.g. 3 for Arrow 1.2.3
|
||||
int version_patch;
|
||||
/// The version string, e.g. "1.2.3"
|
||||
std::string version_string;
|
||||
std::string so_version;
|
||||
std::string full_so_version;
|
||||
|
||||
/// The CMake compiler identifier, e.g. "GNU"
|
||||
std::string compiler_id;
|
||||
std::string compiler_version;
|
||||
std::string compiler_flags;
|
||||
|
||||
/// The git changeset id, if available
|
||||
std::string git_id;
|
||||
/// The git changeset description, if available
|
||||
std::string git_description;
|
||||
std::string package_kind;
|
||||
|
||||
/// The uppercase build type, e.g. "DEBUG" or "RELEASE"
|
||||
std::string build_type;
|
||||
};
|
||||
|
||||
struct RuntimeInfo {
|
||||
/// The enabled SIMD level
|
||||
///
|
||||
/// This can be less than `detected_simd_level` if the ARROW_USER_SIMD_LEVEL
|
||||
/// environment variable is set to another value.
|
||||
std::string simd_level;
|
||||
|
||||
/// The SIMD level available on the OS and CPU
|
||||
std::string detected_simd_level;
|
||||
|
||||
/// Whether using the OS-based timezone database
|
||||
/// This is set at compile-time.
|
||||
bool using_os_timezone_db;
|
||||
|
||||
/// The path to the timezone database; by default None.
|
||||
std::optional<std::string> timezone_db_path;
|
||||
};
|
||||
|
||||
/// \brief Get runtime build info.
|
||||
///
|
||||
/// The returned values correspond to exact loaded version of the Arrow library,
|
||||
/// rather than the values frozen at application compile-time through the `ARROW_*`
|
||||
/// preprocessor definitions.
|
||||
ARROW_EXPORT
|
||||
const BuildInfo& GetBuildInfo();
|
||||
|
||||
/// \brief Get runtime info.
|
||||
///
|
||||
ARROW_EXPORT
|
||||
RuntimeInfo GetRuntimeInfo();
|
||||
|
||||
struct GlobalOptions {
|
||||
/// Path to text timezone database. This is only configurable on Windows,
|
||||
/// which does not have a compatible OS timezone database.
|
||||
std::optional<std::string> timezone_db_path;
|
||||
};
|
||||
|
||||
ARROW_EXPORT
|
||||
Status Initialize(const GlobalOptions& options) noexcept;
|
||||
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,27 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "arrow/csv/options.h"
|
||||
#include "arrow/csv/reader.h"
|
||||
|
||||
// The writer depends on compute module for casting.
|
||||
#include "arrow/util/config.h" // for ARROW_COMPUTE definition
|
||||
#ifdef ARROW_COMPUTE
|
||||
#include "arrow/csv/writer.h"
|
||||
#endif
|
||||
@@ -0,0 +1,36 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
|
||||
#include "arrow/csv/options.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/util/delimiting.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace csv {
|
||||
|
||||
ARROW_EXPORT
|
||||
std::unique_ptr<Chunker> MakeChunker(const ParseOptions& options);
|
||||
|
||||
} // namespace csv
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,78 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <utility>
|
||||
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/type_fwd.h"
|
||||
#include "arrow/util/type_fwd.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace csv {
|
||||
|
||||
class BlockParser;
|
||||
struct ConvertOptions;
|
||||
|
||||
class ARROW_EXPORT ColumnBuilder {
|
||||
public:
|
||||
virtual ~ColumnBuilder() = default;
|
||||
|
||||
/// Spawn a task that will try to convert and append the given CSV block.
|
||||
/// All calls to Append() should happen on the same thread, otherwise
|
||||
/// call Insert() instead.
|
||||
virtual void Append(const std::shared_ptr<BlockParser>& parser) = 0;
|
||||
|
||||
/// Spawn a task that will try to convert and insert the given CSV block
|
||||
virtual void Insert(int64_t block_index,
|
||||
const std::shared_ptr<BlockParser>& parser) = 0;
|
||||
|
||||
/// Return the final chunked array. The TaskGroup _must_ have finished!
|
||||
virtual Result<std::shared_ptr<ChunkedArray>> Finish() = 0;
|
||||
|
||||
std::shared_ptr<arrow::internal::TaskGroup> task_group() { return task_group_; }
|
||||
|
||||
/// Construct a strictly-typed ColumnBuilder.
|
||||
static Result<std::shared_ptr<ColumnBuilder>> Make(
|
||||
MemoryPool* pool, const std::shared_ptr<DataType>& type, int32_t col_index,
|
||||
const ConvertOptions& options,
|
||||
const std::shared_ptr<arrow::internal::TaskGroup>& task_group);
|
||||
|
||||
/// Construct a type-inferring ColumnBuilder.
|
||||
static Result<std::shared_ptr<ColumnBuilder>> Make(
|
||||
MemoryPool* pool, int32_t col_index, const ConvertOptions& options,
|
||||
const std::shared_ptr<arrow::internal::TaskGroup>& task_group);
|
||||
|
||||
/// Construct a ColumnBuilder for a column of nulls
|
||||
/// (i.e. not present in the CSV file).
|
||||
static Result<std::shared_ptr<ColumnBuilder>> MakeNull(
|
||||
MemoryPool* pool, const std::shared_ptr<DataType>& type,
|
||||
const std::shared_ptr<arrow::internal::TaskGroup>& task_group);
|
||||
|
||||
protected:
|
||||
explicit ColumnBuilder(std::shared_ptr<arrow::internal::TaskGroup> task_group)
|
||||
: task_group_(std::move(task_group)) {}
|
||||
|
||||
std::shared_ptr<arrow::internal::TaskGroup> task_group_;
|
||||
};
|
||||
|
||||
} // namespace csv
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,64 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <utility>
|
||||
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/type_fwd.h"
|
||||
#include "arrow/util/type_fwd.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace csv {
|
||||
|
||||
class BlockParser;
|
||||
struct ConvertOptions;
|
||||
|
||||
class ARROW_EXPORT ColumnDecoder {
|
||||
public:
|
||||
virtual ~ColumnDecoder() = default;
|
||||
|
||||
/// Spawn a task that will try to convert and insert the given CSV block
|
||||
virtual Future<std::shared_ptr<Array>> Decode(
|
||||
const std::shared_ptr<BlockParser>& parser) = 0;
|
||||
|
||||
/// Construct a strictly-typed ColumnDecoder.
|
||||
static Result<std::shared_ptr<ColumnDecoder>> Make(MemoryPool* pool,
|
||||
std::shared_ptr<DataType> type,
|
||||
int32_t col_index,
|
||||
const ConvertOptions& options);
|
||||
|
||||
/// Construct a type-inferring ColumnDecoder.
|
||||
/// Inference will run only on the first block, the type will be frozen afterwards.
|
||||
static Result<std::shared_ptr<ColumnDecoder>> Make(MemoryPool* pool, int32_t col_index,
|
||||
const ConvertOptions& options);
|
||||
|
||||
/// Construct a ColumnDecoder for a column of nulls
|
||||
/// (i.e. not present in the CSV file).
|
||||
static Result<std::shared_ptr<ColumnDecoder>> MakeNull(MemoryPool* pool,
|
||||
std::shared_ptr<DataType> type);
|
||||
|
||||
protected:
|
||||
ColumnDecoder() = default;
|
||||
};
|
||||
|
||||
} // namespace csv
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,82 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
|
||||
#include "arrow/csv/options.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/type_fwd.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace csv {
|
||||
|
||||
class BlockParser;
|
||||
|
||||
class ARROW_EXPORT Converter {
|
||||
public:
|
||||
Converter(const std::shared_ptr<DataType>& type, const ConvertOptions& options,
|
||||
MemoryPool* pool);
|
||||
virtual ~Converter() = default;
|
||||
|
||||
virtual Result<std::shared_ptr<Array>> Convert(const BlockParser& parser,
|
||||
int32_t col_index) = 0;
|
||||
|
||||
std::shared_ptr<DataType> type() const { return type_; }
|
||||
|
||||
// Create a Converter for the given data type
|
||||
static Result<std::shared_ptr<Converter>> Make(
|
||||
const std::shared_ptr<DataType>& type, const ConvertOptions& options,
|
||||
MemoryPool* pool = default_memory_pool());
|
||||
|
||||
protected:
|
||||
ARROW_DISALLOW_COPY_AND_ASSIGN(Converter);
|
||||
|
||||
virtual Status Initialize() = 0;
|
||||
|
||||
// CAUTION: ConvertOptions can grow large (if it customizes hundreds or
|
||||
// thousands of columns), so avoid copying it in each Converter.
|
||||
const ConvertOptions& options_;
|
||||
MemoryPool* pool_;
|
||||
std::shared_ptr<DataType> type_;
|
||||
};
|
||||
|
||||
class ARROW_EXPORT DictionaryConverter : public Converter {
|
||||
public:
|
||||
DictionaryConverter(const std::shared_ptr<DataType>& value_type,
|
||||
const ConvertOptions& options, MemoryPool* pool);
|
||||
|
||||
// If the dictionary length goes above this value, conversion will fail
|
||||
// with Status::IndexError.
|
||||
virtual void SetMaxCardinality(int32_t max_length) = 0;
|
||||
|
||||
// Create a Converter for the given dictionary value type.
|
||||
// The dictionary index type will always be Int32.
|
||||
static Result<std::shared_ptr<DictionaryConverter>> Make(
|
||||
const std::shared_ptr<DataType>& value_type, const ConvertOptions& options,
|
||||
MemoryPool* pool = default_memory_pool());
|
||||
|
||||
protected:
|
||||
std::shared_ptr<DataType> value_type_;
|
||||
};
|
||||
|
||||
} // namespace csv
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,55 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <functional>
|
||||
#include <string_view>
|
||||
|
||||
namespace arrow {
|
||||
namespace csv {
|
||||
|
||||
/// \brief Description of an invalid row
|
||||
struct InvalidRow {
|
||||
/// \brief Number of columns expected in the row
|
||||
int32_t expected_columns;
|
||||
/// \brief Actual number of columns found in the row
|
||||
int32_t actual_columns;
|
||||
/// \brief The physical row number if known or -1
|
||||
///
|
||||
/// This number is one-based and also accounts for non-data rows (such as
|
||||
/// CSV header rows).
|
||||
int64_t number;
|
||||
/// \brief View of the entire row. Memory will be freed after callback returns
|
||||
const std::string_view text;
|
||||
};
|
||||
|
||||
/// \brief Result returned by an InvalidRowHandler
|
||||
enum class InvalidRowResult {
|
||||
// Generate an error describing this row
|
||||
Error,
|
||||
// Skip over this row
|
||||
Skip
|
||||
};
|
||||
|
||||
/// \brief callback for handling a row with an invalid number of columns while parsing
|
||||
/// \return result indicating if an error should be returned from the parser or the row is
|
||||
/// skipped
|
||||
using InvalidRowHandler = std::function<InvalidRowResult(const InvalidRow&)>;
|
||||
|
||||
} // namespace csv
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,220 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/csv/invalid_row.h"
|
||||
#include "arrow/csv/type_fwd.h"
|
||||
#include "arrow/io/interfaces.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
class DataType;
|
||||
class TimestampParser;
|
||||
|
||||
namespace csv {
|
||||
|
||||
// Silly workaround for https://github.com/michaeljones/breathe/issues/453
|
||||
constexpr char kDefaultEscapeChar = '\\';
|
||||
|
||||
struct ARROW_EXPORT ParseOptions {
|
||||
// Parsing options
|
||||
|
||||
/// Field delimiter
|
||||
char delimiter = ',';
|
||||
/// Whether quoting is used
|
||||
bool quoting = true;
|
||||
/// Quoting character (if `quoting` is true)
|
||||
char quote_char = '"';
|
||||
/// Whether a quote inside a value is double-quoted
|
||||
bool double_quote = true;
|
||||
/// Whether escaping is used
|
||||
bool escaping = false;
|
||||
/// Escaping character (if `escaping` is true)
|
||||
char escape_char = kDefaultEscapeChar;
|
||||
/// Whether values are allowed to contain CR (0x0d) and LF (0x0a) characters
|
||||
bool newlines_in_values = false;
|
||||
/// Whether empty lines are ignored. If false, an empty line represents
|
||||
/// a single empty value (assuming a one-column CSV file).
|
||||
bool ignore_empty_lines = true;
|
||||
/// A handler function for rows which do not have the correct number of columns
|
||||
InvalidRowHandler invalid_row_handler;
|
||||
|
||||
/// Create parsing options with default values
|
||||
static ParseOptions Defaults();
|
||||
|
||||
/// \brief Test that all set options are valid
|
||||
Status Validate() const;
|
||||
};
|
||||
|
||||
struct ARROW_EXPORT ConvertOptions {
|
||||
// Conversion options
|
||||
|
||||
/// Whether to check UTF8 validity of string columns
|
||||
bool check_utf8 = true;
|
||||
/// Optional per-column types (disabling type inference on those columns)
|
||||
std::unordered_map<std::string, std::shared_ptr<DataType>> column_types;
|
||||
/// Recognized spellings for null values
|
||||
std::vector<std::string> null_values;
|
||||
/// Recognized spellings for boolean true values
|
||||
std::vector<std::string> true_values;
|
||||
/// Recognized spellings for boolean false values
|
||||
std::vector<std::string> false_values;
|
||||
|
||||
/// Whether string / binary columns can have null values.
|
||||
///
|
||||
/// If true, then strings in "null_values" are considered null for string columns.
|
||||
/// If false, then all strings are valid string values.
|
||||
bool strings_can_be_null = false;
|
||||
|
||||
/// Whether quoted values can be null.
|
||||
///
|
||||
/// If true, then strings in "null_values" are also considered null when they
|
||||
/// appear quoted in the CSV file. Otherwise, quoted values are never considered null.
|
||||
bool quoted_strings_can_be_null = true;
|
||||
|
||||
/// Whether to try to automatically dict-encode string / binary data.
|
||||
/// If true, then when type inference detects a string or binary column,
|
||||
/// it is dict-encoded up to `auto_dict_max_cardinality` distinct values
|
||||
/// (per chunk), after which it switches to regular encoding.
|
||||
///
|
||||
/// This setting is ignored for non-inferred columns (those in `column_types`).
|
||||
bool auto_dict_encode = false;
|
||||
int32_t auto_dict_max_cardinality = 50;
|
||||
|
||||
/// Decimal point character for floating-point and decimal data
|
||||
char decimal_point = '.';
|
||||
|
||||
// XXX Should we have a separate FilterOptions?
|
||||
|
||||
/// If non-empty, indicates the names of columns from the CSV file that should
|
||||
/// be actually read and converted (in the vector's order).
|
||||
/// Columns not in this vector will be ignored.
|
||||
std::vector<std::string> include_columns;
|
||||
/// If false, columns in `include_columns` but not in the CSV file will error out.
|
||||
/// If true, columns in `include_columns` but not in the CSV file will produce
|
||||
/// a column of nulls (whose type is selected using `column_types`,
|
||||
/// or null by default)
|
||||
/// This option is ignored if `include_columns` is empty.
|
||||
bool include_missing_columns = false;
|
||||
|
||||
/// User-defined timestamp parsers, using the virtual parser interface in
|
||||
/// arrow/util/value_parsing.h. More than one parser can be specified, and
|
||||
/// the CSV conversion logic will try parsing values starting from the
|
||||
/// beginning of this vector. If no parsers are specified, we use the default
|
||||
/// built-in ISO-8601 parser.
|
||||
std::vector<std::shared_ptr<TimestampParser>> timestamp_parsers;
|
||||
|
||||
/// Create conversion options with default values, including conventional
|
||||
/// values for `null_values`, `true_values` and `false_values`
|
||||
static ConvertOptions Defaults();
|
||||
|
||||
/// \brief Test that all set options are valid
|
||||
Status Validate() const;
|
||||
};
|
||||
|
||||
struct ARROW_EXPORT ReadOptions {
|
||||
// Reader options
|
||||
|
||||
/// Whether to use the global CPU thread pool
|
||||
bool use_threads = true;
|
||||
|
||||
/// \brief Block size we request from the IO layer.
|
||||
///
|
||||
/// This will determine multi-threading granularity as well as
|
||||
/// the size of individual record batches.
|
||||
/// Minimum valid value for block size is 1
|
||||
int32_t block_size = 1 << 20; // 1 MB
|
||||
|
||||
/// Number of header rows to skip (not including the row of column names, if any)
|
||||
int32_t skip_rows = 0;
|
||||
|
||||
/// Number of rows to skip after the column names are read, if any
|
||||
int32_t skip_rows_after_names = 0;
|
||||
|
||||
/// Column names for the target table.
|
||||
/// If empty, fall back on autogenerate_column_names.
|
||||
std::vector<std::string> column_names;
|
||||
|
||||
/// Whether to autogenerate column names if `column_names` is empty.
|
||||
/// If true, column names will be of the form "f0", "f1"...
|
||||
/// If false, column names will be read from the first CSV row after `skip_rows`.
|
||||
bool autogenerate_column_names = false;
|
||||
|
||||
/// Create read options with default values
|
||||
static ReadOptions Defaults();
|
||||
|
||||
/// \brief Test that all set options are valid
|
||||
Status Validate() const;
|
||||
};
|
||||
|
||||
/// \brief Quoting style for CSV writing
|
||||
enum class ARROW_EXPORT QuotingStyle {
|
||||
/// Only enclose values in quotes which need them, because their CSV rendering can
|
||||
/// contain quotes itself (e.g. strings or binary values)
|
||||
Needed,
|
||||
/// Enclose all valid values in quotes. Nulls are not quoted. May cause readers to
|
||||
/// interpret all values as strings if schema is inferred.
|
||||
AllValid,
|
||||
/// Do not enclose any values in quotes. Prevents values from containing quotes ("),
|
||||
/// cell delimiters (,) or line endings (\\r, \\n), (following RFC4180). If values
|
||||
/// contain these characters, an error is caused when attempting to write.
|
||||
None
|
||||
};
|
||||
|
||||
struct ARROW_EXPORT WriteOptions {
|
||||
/// Whether to write an initial header line with column names
|
||||
bool include_header = true;
|
||||
|
||||
/// \brief Maximum number of rows processed at a time
|
||||
///
|
||||
/// The CSV writer converts and writes data in batches of N rows.
|
||||
/// This number can impact performance.
|
||||
int32_t batch_size = 1024;
|
||||
|
||||
/// Field delimiter
|
||||
char delimiter = ',';
|
||||
|
||||
/// \brief The string to write for null values. Quotes are not allowed in this string.
|
||||
std::string null_string;
|
||||
|
||||
/// \brief IO context for writing.
|
||||
io::IOContext io_context;
|
||||
|
||||
/// \brief The end of line character to use for ending rows
|
||||
std::string eol = "\n";
|
||||
|
||||
/// \brief Quoting style
|
||||
QuotingStyle quoting_style = QuotingStyle::Needed;
|
||||
|
||||
/// Create write options with default values
|
||||
static WriteOptions Defaults();
|
||||
|
||||
/// \brief Test that all set options are valid
|
||||
Status Validate() const;
|
||||
};
|
||||
|
||||
} // namespace csv
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,228 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <string_view>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/buffer.h"
|
||||
#include "arrow/csv/options.h"
|
||||
#include "arrow/csv/type_fwd.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
class MemoryPool;
|
||||
|
||||
namespace csv {
|
||||
|
||||
/// Skip at most num_rows from the given input. The input pointer is updated
|
||||
/// and the number of actually skipped rows is returns (may be less than
|
||||
/// requested if the input is too short).
|
||||
ARROW_EXPORT
|
||||
int32_t SkipRows(const uint8_t* data, uint32_t size, int32_t num_rows,
|
||||
const uint8_t** out_data);
|
||||
|
||||
class BlockParserImpl;
|
||||
|
||||
namespace detail {
|
||||
|
||||
struct ParsedValueDesc {
|
||||
uint32_t offset : 31;
|
||||
bool quoted : 1;
|
||||
};
|
||||
|
||||
class ARROW_EXPORT DataBatch {
|
||||
public:
|
||||
explicit DataBatch(int32_t num_cols) : num_cols_(num_cols) {}
|
||||
|
||||
/// \brief Return the number of parsed rows (not skipped)
|
||||
int32_t num_rows() const { return num_rows_; }
|
||||
/// \brief Return the number of parsed columns
|
||||
int32_t num_cols() const { return num_cols_; }
|
||||
/// \brief Return the total size in bytes of parsed data
|
||||
uint32_t num_bytes() const { return parsed_size_; }
|
||||
/// \brief Return the number of skipped rows
|
||||
int32_t num_skipped_rows() const { return static_cast<int32_t>(skipped_rows_.size()); }
|
||||
|
||||
template <typename Visitor>
|
||||
Status VisitColumn(int32_t col_index, int64_t first_row, Visitor&& visit) const {
|
||||
using detail::ParsedValueDesc;
|
||||
|
||||
int32_t batch_row = 0;
|
||||
for (size_t buf_index = 0; buf_index < values_buffers_.size(); ++buf_index) {
|
||||
const auto& values_buffer = values_buffers_[buf_index];
|
||||
const auto values = reinterpret_cast<const ParsedValueDesc*>(values_buffer->data());
|
||||
const auto max_pos =
|
||||
static_cast<int32_t>(values_buffer->size() / sizeof(ParsedValueDesc)) - 1;
|
||||
for (int32_t pos = col_index; pos < max_pos; pos += num_cols_, ++batch_row) {
|
||||
auto start = values[pos].offset;
|
||||
auto stop = values[pos + 1].offset;
|
||||
auto quoted = values[pos + 1].quoted;
|
||||
Status status = visit(parsed_ + start, stop - start, quoted);
|
||||
if (ARROW_PREDICT_FALSE(!status.ok())) {
|
||||
return DecorateWithRowNumber(std::move(status), first_row, batch_row);
|
||||
}
|
||||
}
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
template <typename Visitor>
|
||||
Status VisitLastRow(Visitor&& visit) const {
|
||||
using detail::ParsedValueDesc;
|
||||
|
||||
const auto& values_buffer = values_buffers_.back();
|
||||
const auto values = reinterpret_cast<const ParsedValueDesc*>(values_buffer->data());
|
||||
const auto start_pos =
|
||||
static_cast<int32_t>(values_buffer->size() / sizeof(ParsedValueDesc)) -
|
||||
num_cols_ - 1;
|
||||
for (int32_t col_index = 0; col_index < num_cols_; ++col_index) {
|
||||
auto start = values[start_pos + col_index].offset;
|
||||
auto stop = values[start_pos + col_index + 1].offset;
|
||||
auto quoted = values[start_pos + col_index + 1].quoted;
|
||||
ARROW_RETURN_NOT_OK(visit(parsed_ + start, stop - start, quoted));
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
protected:
|
||||
Status DecorateWithRowNumber(Status&& status, int64_t first_row,
|
||||
int32_t batch_row) const {
|
||||
if (first_row >= 0) {
|
||||
// `skipped_rows_` is in ascending order by construction, so use bisection
|
||||
// to find out how many rows were skipped before `batch_row`.
|
||||
const auto skips_before =
|
||||
std::upper_bound(skipped_rows_.begin(), skipped_rows_.end(), batch_row) -
|
||||
skipped_rows_.begin();
|
||||
status = status.WithMessage("Row #", batch_row + skips_before + first_row, ": ",
|
||||
status.message());
|
||||
}
|
||||
// Use return_if so that when extra context is enabled it will be added
|
||||
ARROW_RETURN_IF_(true, std::move(status), ARROW_STRINGIFY(status));
|
||||
return std::move(status);
|
||||
}
|
||||
|
||||
// The number of rows in this batch (not including any skipped ones)
|
||||
int32_t num_rows_ = 0;
|
||||
// The number of columns
|
||||
int32_t num_cols_ = 0;
|
||||
|
||||
// XXX should we ensure the parsed buffer is padded with 8 or 16 excess zero bytes?
|
||||
// It may help with null parsing...
|
||||
std::vector<std::shared_ptr<Buffer>> values_buffers_;
|
||||
std::shared_ptr<Buffer> parsed_buffer_;
|
||||
const uint8_t* parsed_ = NULLPTR;
|
||||
int32_t parsed_size_ = 0;
|
||||
|
||||
// Record the current num_rows_ each time a row is skipped
|
||||
std::vector<int32_t> skipped_rows_;
|
||||
|
||||
friend class ::arrow::csv::BlockParserImpl;
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
|
||||
constexpr int32_t kMaxParserNumRows = 100000;
|
||||
|
||||
/// \class BlockParser
|
||||
/// \brief A reusable block-based parser for CSV data
|
||||
///
|
||||
/// The parser takes a block of CSV data and delimits rows and fields,
|
||||
/// unquoting and unescaping them on the fly. Parsed data is own by the
|
||||
/// parser, so the original buffer can be discarded after Parse() returns.
|
||||
///
|
||||
/// If the block is truncated (i.e. not all data can be parsed), it is up
|
||||
/// to the caller to arrange the next block to start with the trailing data.
|
||||
/// Also, if the previous block ends with CR (0x0d) and a new block starts
|
||||
/// with LF (0x0a), the parser will consider the leading newline as an empty
|
||||
/// line; the caller should therefore strip it.
|
||||
class ARROW_EXPORT BlockParser {
|
||||
public:
|
||||
explicit BlockParser(ParseOptions options, int32_t num_cols = -1,
|
||||
int64_t first_row = -1, int32_t max_num_rows = kMaxParserNumRows);
|
||||
explicit BlockParser(MemoryPool* pool, ParseOptions options, int32_t num_cols = -1,
|
||||
int64_t first_row = -1, int32_t max_num_rows = kMaxParserNumRows);
|
||||
~BlockParser();
|
||||
|
||||
/// \brief Parse a block of data
|
||||
///
|
||||
/// Parse a block of CSV data, ingesting up to max_num_rows rows.
|
||||
/// The number of bytes actually parsed is returned in out_size.
|
||||
Status Parse(std::string_view data, uint32_t* out_size);
|
||||
|
||||
/// \brief Parse sequential blocks of data
|
||||
///
|
||||
/// Only the last block is allowed to be truncated.
|
||||
Status Parse(const std::vector<std::string_view>& data, uint32_t* out_size);
|
||||
|
||||
/// \brief Parse the final block of data
|
||||
///
|
||||
/// Like Parse(), but called with the final block in a file.
|
||||
/// The last row may lack a trailing line separator.
|
||||
Status ParseFinal(std::string_view data, uint32_t* out_size);
|
||||
|
||||
/// \brief Parse the final sequential blocks of data
|
||||
///
|
||||
/// Only the last block is allowed to be truncated.
|
||||
Status ParseFinal(const std::vector<std::string_view>& data, uint32_t* out_size);
|
||||
|
||||
/// \brief Return the number of parsed rows
|
||||
int32_t num_rows() const { return parsed_batch().num_rows(); }
|
||||
/// \brief Return the number of parsed columns
|
||||
int32_t num_cols() const { return parsed_batch().num_cols(); }
|
||||
/// \brief Return the total size in bytes of parsed data
|
||||
uint32_t num_bytes() const { return parsed_batch().num_bytes(); }
|
||||
|
||||
/// \brief Return the total number of rows including rows which were skipped
|
||||
int32_t total_num_rows() const {
|
||||
return parsed_batch().num_rows() + parsed_batch().num_skipped_rows();
|
||||
}
|
||||
|
||||
/// \brief Return the row number of the first row in the block or -1 if unsupported
|
||||
int64_t first_row_num() const;
|
||||
|
||||
/// \brief Visit parsed values in a column
|
||||
///
|
||||
/// The signature of the visitor is
|
||||
/// Status(const uint8_t* data, uint32_t size, bool quoted)
|
||||
template <typename Visitor>
|
||||
Status VisitColumn(int32_t col_index, Visitor&& visit) const {
|
||||
return parsed_batch().VisitColumn(col_index, first_row_num(),
|
||||
std::forward<Visitor>(visit));
|
||||
}
|
||||
|
||||
template <typename Visitor>
|
||||
Status VisitLastRow(Visitor&& visit) const {
|
||||
return parsed_batch().VisitLastRow(std::forward<Visitor>(visit));
|
||||
}
|
||||
|
||||
protected:
|
||||
std::unique_ptr<BlockParserImpl> impl_;
|
||||
|
||||
const detail::DataBatch& parsed_batch() const;
|
||||
};
|
||||
|
||||
} // namespace csv
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,125 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
|
||||
#include "arrow/csv/options.h" // IWYU pragma: keep
|
||||
#include "arrow/io/interfaces.h"
|
||||
#include "arrow/record_batch.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/type.h"
|
||||
#include "arrow/type_fwd.h"
|
||||
#include "arrow/util/future.h"
|
||||
#include "arrow/util/thread_pool.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace io {
|
||||
class InputStream;
|
||||
} // namespace io
|
||||
|
||||
namespace csv {
|
||||
|
||||
/// A class that reads an entire CSV file into a Arrow Table
|
||||
class ARROW_EXPORT TableReader {
|
||||
public:
|
||||
virtual ~TableReader() = default;
|
||||
|
||||
/// Read the entire CSV file and convert it to a Arrow Table
|
||||
virtual Result<std::shared_ptr<Table>> Read() = 0;
|
||||
/// Read the entire CSV file and convert it to a Arrow Table
|
||||
virtual Future<std::shared_ptr<Table>> ReadAsync() = 0;
|
||||
|
||||
/// Create a TableReader instance
|
||||
static Result<std::shared_ptr<TableReader>> Make(io::IOContext io_context,
|
||||
std::shared_ptr<io::InputStream> input,
|
||||
const ReadOptions&,
|
||||
const ParseOptions&,
|
||||
const ConvertOptions&);
|
||||
|
||||
ARROW_DEPRECATED(
|
||||
"Deprecated in 4.0.0. "
|
||||
"Use MemoryPool-less variant (the IOContext holds a pool already)")
|
||||
static Result<std::shared_ptr<TableReader>> Make(
|
||||
MemoryPool* pool, io::IOContext io_context, std::shared_ptr<io::InputStream> input,
|
||||
const ReadOptions&, const ParseOptions&, const ConvertOptions&);
|
||||
};
|
||||
|
||||
/// \brief A class that reads a CSV file incrementally
|
||||
///
|
||||
/// Caveats:
|
||||
/// - For now, this is always single-threaded (regardless of `ReadOptions::use_threads`.
|
||||
/// - Type inference is done on the first block and types are frozen afterwards;
|
||||
/// to make sure the right data types are inferred, either set
|
||||
/// `ReadOptions::block_size` to a large enough value, or use
|
||||
/// `ConvertOptions::column_types` to set the desired data types explicitly.
|
||||
class ARROW_EXPORT StreamingReader : public RecordBatchReader {
|
||||
public:
|
||||
virtual ~StreamingReader() = default;
|
||||
|
||||
virtual Future<std::shared_ptr<RecordBatch>> ReadNextAsync() = 0;
|
||||
|
||||
/// \brief Return the number of bytes which have been read and processed
|
||||
///
|
||||
/// The returned number includes CSV bytes which the StreamingReader has
|
||||
/// finished processing, but not bytes for which some processing (e.g.
|
||||
/// CSV parsing or conversion to Arrow layout) is still ongoing.
|
||||
///
|
||||
/// Furthermore, the following rules apply:
|
||||
/// - bytes skipped by `ReadOptions.skip_rows` are counted as being read before
|
||||
/// any records are returned.
|
||||
/// - bytes read while parsing the header are counted as being read before any
|
||||
/// records are returned.
|
||||
/// - bytes skipped by `ReadOptions.skip_rows_after_names` are counted after the
|
||||
/// first batch is returned.
|
||||
virtual int64_t bytes_read() const = 0;
|
||||
|
||||
/// Create a StreamingReader instance
|
||||
///
|
||||
/// This involves some I/O as the first batch must be loaded during the creation process
|
||||
/// so it is returned as a future
|
||||
///
|
||||
/// Currently, the StreamingReader is not async-reentrant and does not do any fan-out
|
||||
/// parsing (see ARROW-11889)
|
||||
static Future<std::shared_ptr<StreamingReader>> MakeAsync(
|
||||
io::IOContext io_context, std::shared_ptr<io::InputStream> input,
|
||||
arrow::internal::Executor* cpu_executor, const ReadOptions&, const ParseOptions&,
|
||||
const ConvertOptions&);
|
||||
|
||||
static Result<std::shared_ptr<StreamingReader>> Make(
|
||||
io::IOContext io_context, std::shared_ptr<io::InputStream> input,
|
||||
const ReadOptions&, const ParseOptions&, const ConvertOptions&);
|
||||
|
||||
ARROW_DEPRECATED("Deprecated in 4.0.0. Use IOContext-based overload")
|
||||
static Result<std::shared_ptr<StreamingReader>> Make(
|
||||
MemoryPool* pool, std::shared_ptr<io::InputStream> input,
|
||||
const ReadOptions& read_options, const ParseOptions& parse_options,
|
||||
const ConvertOptions& convert_options);
|
||||
};
|
||||
|
||||
/// \brief Count the logical rows of data in a CSV file (i.e. the
|
||||
/// number of rows you would get if you read the file into a table).
|
||||
ARROW_EXPORT
|
||||
Future<int64_t> CountRowsAsync(io::IOContext io_context,
|
||||
std::shared_ptr<io::InputStream> input,
|
||||
arrow::internal::Executor* cpu_executor,
|
||||
const ReadOptions&, const ParseOptions&);
|
||||
|
||||
} // namespace csv
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,55 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/csv/parser.h"
|
||||
#include "arrow/testing/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace csv {
|
||||
|
||||
ARROW_TESTING_EXPORT
|
||||
std::string MakeCSVData(std::vector<std::string> lines);
|
||||
|
||||
// Make a BlockParser from a vector of lines representing a CSV file
|
||||
ARROW_TESTING_EXPORT
|
||||
void MakeCSVParser(std::vector<std::string> lines, ParseOptions options, int32_t num_cols,
|
||||
std::shared_ptr<BlockParser>* out);
|
||||
|
||||
ARROW_TESTING_EXPORT
|
||||
void MakeCSVParser(std::vector<std::string> lines, ParseOptions options,
|
||||
std::shared_ptr<BlockParser>* out);
|
||||
|
||||
ARROW_TESTING_EXPORT
|
||||
void MakeCSVParser(std::vector<std::string> lines, std::shared_ptr<BlockParser>* out);
|
||||
|
||||
// Make a BlockParser from a vector of strings representing a single CSV column
|
||||
ARROW_TESTING_EXPORT
|
||||
void MakeColumnParser(std::vector<std::string> items, std::shared_ptr<BlockParser>* out);
|
||||
|
||||
ARROW_TESTING_EXPORT
|
||||
Result<std::shared_ptr<Buffer>> MakeSampleCsvBuffer(
|
||||
size_t num_rows, std::function<bool(size_t row_num)> is_valid = {});
|
||||
|
||||
} // namespace csv
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,28 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
namespace arrow {
|
||||
namespace csv {
|
||||
|
||||
class TableReader;
|
||||
struct ConvertOptions;
|
||||
struct ReadOptions;
|
||||
struct ParseOptions;
|
||||
struct WriteOptions;
|
||||
|
||||
} // namespace csv
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,89 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
|
||||
#include "arrow/csv/options.h"
|
||||
#include "arrow/io/interfaces.h"
|
||||
#include "arrow/ipc/type_fwd.h"
|
||||
#include "arrow/record_batch.h"
|
||||
#include "arrow/table.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace csv {
|
||||
|
||||
// Functionality for converting Arrow data to Comma separated value text.
|
||||
// This library supports all primitive types that can be cast to a StringArrays.
|
||||
// It applies to following formatting rules:
|
||||
// - For non-binary types no quotes surround values. Nulls are represented as the empty
|
||||
// string.
|
||||
// - For binary types all non-null data is quoted (and quotes within data are escaped
|
||||
// with an additional quote).
|
||||
// Null values are empty and unquoted.
|
||||
|
||||
/// \defgroup csv-write-functions High-level functions for writing CSV files
|
||||
/// @{
|
||||
|
||||
/// \brief Convert table to CSV and write the result to output.
|
||||
/// Experimental
|
||||
ARROW_EXPORT Status WriteCSV(const Table& table, const WriteOptions& options,
|
||||
arrow::io::OutputStream* output);
|
||||
/// \brief Convert batch to CSV and write the result to output.
|
||||
/// Experimental
|
||||
ARROW_EXPORT Status WriteCSV(const RecordBatch& batch, const WriteOptions& options,
|
||||
arrow::io::OutputStream* output);
|
||||
/// \brief Convert batches read through a RecordBatchReader
|
||||
/// to CSV and write the results to output.
|
||||
/// Experimental
|
||||
ARROW_EXPORT Status WriteCSV(const std::shared_ptr<RecordBatchReader>& reader,
|
||||
const WriteOptions& options,
|
||||
arrow::io::OutputStream* output);
|
||||
|
||||
/// @}
|
||||
|
||||
/// \defgroup csv-writer-factories Functions for creating an incremental CSV writer
|
||||
/// @{
|
||||
|
||||
/// \brief Create a new CSV writer. User is responsible for closing the
|
||||
/// actual OutputStream.
|
||||
///
|
||||
/// \param[in] sink output stream to write to
|
||||
/// \param[in] schema the schema of the record batches to be written
|
||||
/// \param[in] options options for serialization
|
||||
/// \return Result<std::shared_ptr<RecordBatchWriter>>
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<ipc::RecordBatchWriter>> MakeCSVWriter(
|
||||
std::shared_ptr<io::OutputStream> sink, const std::shared_ptr<Schema>& schema,
|
||||
const WriteOptions& options = WriteOptions::Defaults());
|
||||
|
||||
/// \brief Create a new CSV writer.
|
||||
///
|
||||
/// \param[in] sink output stream to write to (does not take ownership)
|
||||
/// \param[in] schema the schema of the record batches to be written
|
||||
/// \param[in] options options for serialization
|
||||
/// \return Result<std::shared_ptr<RecordBatchWriter>>
|
||||
ARROW_EXPORT
|
||||
Result<std::shared_ptr<ipc::RecordBatchWriter>> MakeCSVWriter(
|
||||
io::OutputStream* sink, const std::shared_ptr<Schema>& schema,
|
||||
const WriteOptions& options = WriteOptions::Defaults());
|
||||
|
||||
/// @}
|
||||
|
||||
} // namespace csv
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,36 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// This API is EXPERIMENTAL.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "arrow/compute/exec/expression.h"
|
||||
#include "arrow/dataset/dataset.h"
|
||||
#include "arrow/dataset/discovery.h"
|
||||
#include "arrow/dataset/file_base.h"
|
||||
#ifdef ARROW_CSV
|
||||
#include "arrow/dataset/file_csv.h"
|
||||
#endif
|
||||
#include "arrow/dataset/file_ipc.h"
|
||||
#ifdef ARROW_ORC
|
||||
#include "arrow/dataset/file_orc.h"
|
||||
#endif
|
||||
#ifdef ARROW_PARQUET
|
||||
#include "arrow/dataset/file_parquet.h"
|
||||
#endif
|
||||
#include "arrow/dataset/scanner.h"
|
||||
@@ -0,0 +1,463 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// This API is EXPERIMENTAL.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <optional>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/compute/exec/expression.h"
|
||||
#include "arrow/dataset/type_fwd.h"
|
||||
#include "arrow/dataset/visibility.h"
|
||||
#include "arrow/util/async_generator_fwd.h"
|
||||
#include "arrow/util/future.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/mutex.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
namespace internal {
|
||||
class Executor;
|
||||
} // namespace internal
|
||||
|
||||
namespace dataset {
|
||||
|
||||
using RecordBatchGenerator = std::function<Future<std::shared_ptr<RecordBatch>>()>;
|
||||
|
||||
/// \brief Description of a column to scan
|
||||
struct ARROW_DS_EXPORT FragmentSelectionColumn {
|
||||
/// \brief The path to the column to load
|
||||
FieldPath path;
|
||||
/// \brief The type of the column in the dataset schema
|
||||
///
|
||||
/// A format may choose to ignore this field completely. For example, when
|
||||
/// reading from IPC the reader can just return the column in the data type
|
||||
/// that is stored on disk. There is no point in doing anything special.
|
||||
///
|
||||
/// However, some formats may be capable of casting on the fly. For example,
|
||||
/// when reading from CSV, if we know the target type of the column, we can
|
||||
/// convert from string to the target type as we read.
|
||||
DataType* requested_type;
|
||||
/// \brief The index in the output selection of this column
|
||||
int selection_index;
|
||||
};
|
||||
|
||||
/// \brief Instructions for scanning a particular fragment
|
||||
///
|
||||
/// The fragment scan request is dervied from ScanV2Options. The main
|
||||
/// difference is that the scan options are based on the dataset schema
|
||||
/// while the fragment request is based on the fragment schema.
|
||||
struct ARROW_DS_EXPORT FragmentScanRequest {
|
||||
/// \brief A row filter
|
||||
///
|
||||
/// The filter expression should be written against the fragment schema.
|
||||
///
|
||||
/// \see ScanV2Options for details on how this filter should be applied
|
||||
compute::Expression filter = compute::literal(true);
|
||||
|
||||
/// \brief The columns to scan
|
||||
///
|
||||
/// These indices refer to the fragment schema
|
||||
///
|
||||
/// Note: This is NOT a simple list of top-level column indices.
|
||||
/// For more details \see ScanV2Options
|
||||
///
|
||||
/// If possible a fragment should only read from disk the data needed
|
||||
/// to satisfy these columns. If a format cannot partially read a nested
|
||||
/// column (e.g. JSON) then it must apply the column selection (in memory)
|
||||
/// before returning the scanned batch.
|
||||
std::vector<FragmentSelectionColumn> columns;
|
||||
/// \brief Options specific to the format being scanned
|
||||
const FragmentScanOptions* format_scan_options;
|
||||
};
|
||||
|
||||
/// \brief An iterator-like object that can yield batches created from a fragment
|
||||
class ARROW_DS_EXPORT FragmentScanner {
|
||||
public:
|
||||
/// This instance will only be destroyed after all ongoing scan futures
|
||||
/// have been completed.
|
||||
///
|
||||
/// This means any callbacks created as part of the scan can safely
|
||||
/// capture `this`
|
||||
virtual ~FragmentScanner() = default;
|
||||
/// \brief Scan a batch of data from the file
|
||||
/// \param batch_number The index of the batch to read
|
||||
virtual Future<std::shared_ptr<RecordBatch>> ScanBatch(int batch_number) = 0;
|
||||
/// \brief Calculate an estimate of how many data bytes the given batch will represent
|
||||
///
|
||||
/// "Data bytes" should be the total size of all the buffers once the data has been
|
||||
/// decoded into the Arrow format.
|
||||
virtual int64_t EstimatedDataBytes(int batch_number) = 0;
|
||||
/// \brief The number of batches in the fragment to scan
|
||||
virtual int NumBatches() = 0;
|
||||
};
|
||||
|
||||
/// \brief Information learned about a fragment through inspection
|
||||
///
|
||||
/// This information can be used to figure out which fields need
|
||||
/// to be read from a file and how the data read in should be evolved
|
||||
/// to match the dataset schema.
|
||||
///
|
||||
/// For example, from a CSV file we can inspect and learn the column
|
||||
/// names and use those column names to determine which columns to load
|
||||
/// from the CSV file.
|
||||
struct ARROW_DS_EXPORT InspectedFragment {
|
||||
explicit InspectedFragment(std::vector<std::string> column_names)
|
||||
: column_names(std::move(column_names)) {}
|
||||
std::vector<std::string> column_names;
|
||||
};
|
||||
|
||||
/// \brief A granular piece of a Dataset, such as an individual file.
|
||||
///
|
||||
/// A Fragment can be read/scanned separately from other fragments. It yields a
|
||||
/// collection of RecordBatches when scanned
|
||||
///
|
||||
/// Note that Fragments have well defined physical schemas which are reconciled by
|
||||
/// the Datasets which contain them; these physical schemas may differ from a parent
|
||||
/// Dataset's schema and the physical schemas of sibling Fragments.
|
||||
class ARROW_DS_EXPORT Fragment : public std::enable_shared_from_this<Fragment> {
|
||||
public:
|
||||
/// \brief An expression that represents no known partition information
|
||||
static const compute::Expression kNoPartitionInformation;
|
||||
|
||||
/// \brief Return the physical schema of the Fragment.
|
||||
///
|
||||
/// The physical schema is also called the writer schema.
|
||||
/// This method is blocking and may suffer from high latency filesystem.
|
||||
/// The schema is cached after being read once, or may be specified at construction.
|
||||
Result<std::shared_ptr<Schema>> ReadPhysicalSchema();
|
||||
|
||||
/// An asynchronous version of Scan
|
||||
virtual Result<RecordBatchGenerator> ScanBatchesAsync(
|
||||
const std::shared_ptr<ScanOptions>& options) = 0;
|
||||
|
||||
/// \brief Inspect a fragment to learn basic information
|
||||
///
|
||||
/// This will be called before a scan and a fragment should attach whatever
|
||||
/// information will be needed to figure out an evolution strategy. This information
|
||||
/// will then be passed to the call to BeginScan
|
||||
virtual Future<std::shared_ptr<InspectedFragment>> InspectFragment(
|
||||
const FragmentScanOptions* format_options, compute::ExecContext* exec_context);
|
||||
|
||||
/// \brief Start a scan operation
|
||||
virtual Future<std::shared_ptr<FragmentScanner>> BeginScan(
|
||||
const FragmentScanRequest& request, const InspectedFragment& inspected_fragment,
|
||||
const FragmentScanOptions* format_options, compute::ExecContext* exec_context);
|
||||
|
||||
/// \brief Count the number of rows in this fragment matching the filter using metadata
|
||||
/// only. That is, this method may perform I/O, but will not load data.
|
||||
///
|
||||
/// If this is not possible, resolve with an empty optional. The fragment can perform
|
||||
/// I/O (e.g. to read metadata) before it deciding whether it can satisfy the request.
|
||||
virtual Future<std::optional<int64_t>> CountRows(
|
||||
compute::Expression predicate, const std::shared_ptr<ScanOptions>& options);
|
||||
|
||||
virtual std::string type_name() const = 0;
|
||||
virtual std::string ToString() const { return type_name(); }
|
||||
|
||||
/// \brief An expression which evaluates to true for all data viewed by this
|
||||
/// Fragment.
|
||||
const compute::Expression& partition_expression() const {
|
||||
return partition_expression_;
|
||||
}
|
||||
|
||||
virtual ~Fragment() = default;
|
||||
|
||||
protected:
|
||||
Fragment() = default;
|
||||
explicit Fragment(compute::Expression partition_expression,
|
||||
std::shared_ptr<Schema> physical_schema);
|
||||
|
||||
virtual Result<std::shared_ptr<Schema>> ReadPhysicalSchemaImpl() = 0;
|
||||
|
||||
util::Mutex physical_schema_mutex_;
|
||||
compute::Expression partition_expression_ = compute::literal(true);
|
||||
std::shared_ptr<Schema> physical_schema_;
|
||||
};
|
||||
|
||||
/// \brief Per-scan options for fragment(s) in a dataset.
|
||||
///
|
||||
/// These options are not intrinsic to the format or fragment itself, but do affect
|
||||
/// the results of a scan. These are options which make sense to change between
|
||||
/// repeated reads of the same dataset, such as format-specific conversion options
|
||||
/// (that do not affect the schema).
|
||||
///
|
||||
/// \ingroup dataset-scanning
|
||||
class ARROW_DS_EXPORT FragmentScanOptions {
|
||||
public:
|
||||
virtual std::string type_name() const = 0;
|
||||
virtual std::string ToString() const { return type_name(); }
|
||||
virtual ~FragmentScanOptions() = default;
|
||||
};
|
||||
|
||||
/// \defgroup dataset-implementations Concrete implementations
|
||||
///
|
||||
/// @{
|
||||
|
||||
/// \brief A trivial Fragment that yields ScanTask out of a fixed set of
|
||||
/// RecordBatch.
|
||||
class ARROW_DS_EXPORT InMemoryFragment : public Fragment {
|
||||
public:
|
||||
class Scanner;
|
||||
InMemoryFragment(std::shared_ptr<Schema> schema, RecordBatchVector record_batches,
|
||||
compute::Expression = compute::literal(true));
|
||||
explicit InMemoryFragment(RecordBatchVector record_batches,
|
||||
compute::Expression = compute::literal(true));
|
||||
|
||||
Result<RecordBatchGenerator> ScanBatchesAsync(
|
||||
const std::shared_ptr<ScanOptions>& options) override;
|
||||
Future<std::optional<int64_t>> CountRows(
|
||||
compute::Expression predicate,
|
||||
const std::shared_ptr<ScanOptions>& options) override;
|
||||
|
||||
Future<std::shared_ptr<InspectedFragment>> InspectFragment(
|
||||
const FragmentScanOptions* format_options,
|
||||
compute::ExecContext* exec_context) override;
|
||||
Future<std::shared_ptr<FragmentScanner>> BeginScan(
|
||||
const FragmentScanRequest& request, const InspectedFragment& inspected_fragment,
|
||||
const FragmentScanOptions* format_options,
|
||||
compute::ExecContext* exec_context) override;
|
||||
|
||||
std::string type_name() const override { return "in-memory"; }
|
||||
|
||||
protected:
|
||||
Result<std::shared_ptr<Schema>> ReadPhysicalSchemaImpl() override;
|
||||
|
||||
RecordBatchVector record_batches_;
|
||||
};
|
||||
|
||||
/// @}
|
||||
|
||||
using FragmentGenerator = AsyncGenerator<std::shared_ptr<Fragment>>;
|
||||
|
||||
/// \brief Rules for converting the dataset schema to and from fragment schemas
|
||||
class ARROW_DS_EXPORT FragmentEvolutionStrategy {
|
||||
public:
|
||||
/// This instance will only be destroyed when all scan operations for the
|
||||
/// fragment have completed.
|
||||
virtual ~FragmentEvolutionStrategy() = default;
|
||||
/// \brief A guarantee that applies to all batches of this fragment
|
||||
///
|
||||
/// For example, if a fragment is missing one of the fields in the dataset
|
||||
/// schema then a typical evolution strategy is to set that field to null.
|
||||
///
|
||||
/// So if the column at index 3 is missing then the guarantee is
|
||||
/// FieldRef(3) == null
|
||||
///
|
||||
/// Individual field guarantees should be AND'd together and returned
|
||||
/// as a single expression.
|
||||
virtual Result<compute::Expression> GetGuarantee(
|
||||
const std::vector<FieldPath>& dataset_schema_selection) const = 0;
|
||||
|
||||
/// \brief Return a fragment schema selection given a dataset schema selection
|
||||
///
|
||||
/// For example, if the user wants fields 2 & 4 of the dataset schema and
|
||||
/// in this fragment the field 2 is missing and the field 4 is at index 1 then
|
||||
/// this should return {1}
|
||||
virtual Result<std::vector<FragmentSelectionColumn>> DevolveSelection(
|
||||
const std::vector<FieldPath>& dataset_schema_selection) const = 0;
|
||||
|
||||
/// \brief Return a filter expression bound to the fragment schema given
|
||||
/// a filter expression bound to the dataset schema
|
||||
///
|
||||
/// The dataset scan filter will first be simplified by the guarantee returned
|
||||
/// by GetGuarantee. This means an evolution that only handles dropping or casting
|
||||
/// fields doesn't need to do anything here except return the given filter.
|
||||
///
|
||||
/// On the other hand, an evolution that is doing some kind of aliasing will likely
|
||||
/// need to convert field references in the filter to the aliased field references
|
||||
/// where appropriate.
|
||||
virtual Result<compute::Expression> DevolveFilter(
|
||||
const compute::Expression& filter) const = 0;
|
||||
|
||||
/// \brief Convert a batch from the fragment schema to the dataset schema
|
||||
///
|
||||
/// Typically this involves casting columns from the data type stored on disk
|
||||
/// to the data type of the dataset schema. For example, this fragment might
|
||||
/// have columns stored as int32 and the dataset schema might have int64 for
|
||||
/// the column. In this case we should cast the column from int32 to int64.
|
||||
///
|
||||
/// Note: A fragment may perform this cast as the data is read from disk. In
|
||||
/// that case a cast might not be needed.
|
||||
virtual Result<compute::ExecBatch> EvolveBatch(
|
||||
const std::shared_ptr<RecordBatch>& batch,
|
||||
const std::vector<FieldPath>& dataset_selection,
|
||||
const std::vector<FragmentSelectionColumn>& selection) const = 0;
|
||||
|
||||
/// \brief Return a string description of this strategy
|
||||
virtual std::string ToString() const = 0;
|
||||
};
|
||||
|
||||
/// \brief Lookup to create a FragmentEvolutionStrategy for a given fragment
|
||||
class ARROW_DS_EXPORT DatasetEvolutionStrategy {
|
||||
public:
|
||||
virtual ~DatasetEvolutionStrategy() = default;
|
||||
/// \brief Create a strategy for evolving from the given fragment
|
||||
/// to the schema of the given dataset
|
||||
virtual std::unique_ptr<FragmentEvolutionStrategy> GetStrategy(
|
||||
const Dataset& dataset, const Fragment& fragment,
|
||||
const InspectedFragment& inspected_fragment) = 0;
|
||||
|
||||
/// \brief Return a string description of this strategy
|
||||
virtual std::string ToString() const = 0;
|
||||
};
|
||||
|
||||
ARROW_DS_EXPORT std::unique_ptr<DatasetEvolutionStrategy>
|
||||
MakeBasicDatasetEvolutionStrategy();
|
||||
|
||||
/// \brief A container of zero or more Fragments.
|
||||
///
|
||||
/// A Dataset acts as a union of Fragments, e.g. files deeply nested in a
|
||||
/// directory. A Dataset has a schema to which Fragments must align during a
|
||||
/// scan operation. This is analogous to Avro's reader and writer schema.
|
||||
class ARROW_DS_EXPORT Dataset : public std::enable_shared_from_this<Dataset> {
|
||||
public:
|
||||
/// \brief Begin to build a new Scan operation against this Dataset
|
||||
Result<std::shared_ptr<ScannerBuilder>> NewScan();
|
||||
|
||||
/// \brief GetFragments returns an iterator of Fragments given a predicate.
|
||||
Result<FragmentIterator> GetFragments(compute::Expression predicate);
|
||||
Result<FragmentIterator> GetFragments();
|
||||
|
||||
/// \brief Async versions of `GetFragments`.
|
||||
Result<FragmentGenerator> GetFragmentsAsync(compute::Expression predicate);
|
||||
Result<FragmentGenerator> GetFragmentsAsync();
|
||||
|
||||
const std::shared_ptr<Schema>& schema() const { return schema_; }
|
||||
|
||||
/// \brief An expression which evaluates to true for all data viewed by this Dataset.
|
||||
/// May be null, which indicates no information is available.
|
||||
const compute::Expression& partition_expression() const {
|
||||
return partition_expression_;
|
||||
}
|
||||
|
||||
/// \brief The name identifying the kind of Dataset
|
||||
virtual std::string type_name() const = 0;
|
||||
|
||||
/// \brief Return a copy of this Dataset with a different schema.
|
||||
///
|
||||
/// The copy will view the same Fragments. If the new schema is not compatible with the
|
||||
/// original dataset's schema then an error will be raised.
|
||||
virtual Result<std::shared_ptr<Dataset>> ReplaceSchema(
|
||||
std::shared_ptr<Schema> schema) const = 0;
|
||||
|
||||
/// \brief Rules used by this dataset to handle schema evolution
|
||||
DatasetEvolutionStrategy* evolution_strategy() { return evolution_strategy_.get(); }
|
||||
|
||||
virtual ~Dataset() = default;
|
||||
|
||||
protected:
|
||||
explicit Dataset(std::shared_ptr<Schema> schema) : schema_(std::move(schema)) {}
|
||||
|
||||
Dataset(std::shared_ptr<Schema> schema, compute::Expression partition_expression);
|
||||
|
||||
virtual Result<FragmentIterator> GetFragmentsImpl(compute::Expression predicate) = 0;
|
||||
/// \brief Default non-virtual implementation method for the base
|
||||
/// `GetFragmentsAsyncImpl` method, which creates a fragment generator for
|
||||
/// the dataset, possibly filtering results with a predicate (forwarding to
|
||||
/// the synchronous `GetFragmentsImpl` method and moving the computations
|
||||
/// to the background, using the IO thread pool).
|
||||
///
|
||||
/// Currently, `executor` is always the same as `internal::GetCPUThreadPool()`,
|
||||
/// which means the results from the underlying fragment generator will be
|
||||
/// transfered to the default CPU thread pool. The generator itself is
|
||||
/// offloaded to run on the default IO thread pool.
|
||||
virtual Result<FragmentGenerator> GetFragmentsAsyncImpl(
|
||||
compute::Expression predicate, arrow::internal::Executor* executor);
|
||||
|
||||
std::shared_ptr<Schema> schema_;
|
||||
compute::Expression partition_expression_ = compute::literal(true);
|
||||
std::unique_ptr<DatasetEvolutionStrategy> evolution_strategy_ =
|
||||
MakeBasicDatasetEvolutionStrategy();
|
||||
};
|
||||
|
||||
/// \addtogroup dataset-implementations
|
||||
///
|
||||
/// @{
|
||||
|
||||
/// \brief A Source which yields fragments wrapping a stream of record batches.
|
||||
///
|
||||
/// The record batches must match the schema provided to the source at construction.
|
||||
class ARROW_DS_EXPORT InMemoryDataset : public Dataset {
|
||||
public:
|
||||
class RecordBatchGenerator {
|
||||
public:
|
||||
virtual ~RecordBatchGenerator() = default;
|
||||
virtual RecordBatchIterator Get() const = 0;
|
||||
};
|
||||
|
||||
/// Construct a dataset from a schema and a factory of record batch iterators.
|
||||
InMemoryDataset(std::shared_ptr<Schema> schema,
|
||||
std::shared_ptr<RecordBatchGenerator> get_batches)
|
||||
: Dataset(std::move(schema)), get_batches_(std::move(get_batches)) {}
|
||||
|
||||
/// Convenience constructor taking a fixed list of batches
|
||||
InMemoryDataset(std::shared_ptr<Schema> schema, RecordBatchVector batches);
|
||||
|
||||
/// Convenience constructor taking a Table
|
||||
explicit InMemoryDataset(std::shared_ptr<Table> table);
|
||||
|
||||
std::string type_name() const override { return "in-memory"; }
|
||||
|
||||
Result<std::shared_ptr<Dataset>> ReplaceSchema(
|
||||
std::shared_ptr<Schema> schema) const override;
|
||||
|
||||
protected:
|
||||
Result<FragmentIterator> GetFragmentsImpl(compute::Expression predicate) override;
|
||||
|
||||
std::shared_ptr<RecordBatchGenerator> get_batches_;
|
||||
};
|
||||
|
||||
/// \brief A Dataset wrapping child Datasets.
|
||||
class ARROW_DS_EXPORT UnionDataset : public Dataset {
|
||||
public:
|
||||
/// \brief Construct a UnionDataset wrapping child Datasets.
|
||||
///
|
||||
/// \param[in] schema the schema of the resulting dataset.
|
||||
/// \param[in] children one or more child Datasets. Their schemas must be identical to
|
||||
/// schema.
|
||||
static Result<std::shared_ptr<UnionDataset>> Make(std::shared_ptr<Schema> schema,
|
||||
DatasetVector children);
|
||||
|
||||
const DatasetVector& children() const { return children_; }
|
||||
|
||||
std::string type_name() const override { return "union"; }
|
||||
|
||||
Result<std::shared_ptr<Dataset>> ReplaceSchema(
|
||||
std::shared_ptr<Schema> schema) const override;
|
||||
|
||||
protected:
|
||||
Result<FragmentIterator> GetFragmentsImpl(compute::Expression predicate) override;
|
||||
|
||||
explicit UnionDataset(std::shared_ptr<Schema> schema, DatasetVector children)
|
||||
: Dataset(std::move(schema)), children_(std::move(children)) {}
|
||||
|
||||
DatasetVector children_;
|
||||
|
||||
friend class UnionDatasetFactory;
|
||||
};
|
||||
|
||||
/// @}
|
||||
|
||||
} // namespace dataset
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,103 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
|
||||
#include "arrow/dataset/file_base.h"
|
||||
#include "arrow/record_batch.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/util/async_util.h"
|
||||
#include "arrow/util/future.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace dataset {
|
||||
namespace internal {
|
||||
|
||||
// This lines up with our other defaults in the scanner and execution plan
|
||||
constexpr uint64_t kDefaultDatasetWriterMaxRowsQueued = 8 * 1024 * 1024;
|
||||
|
||||
/// \brief Utility class that manages a set of writers to different paths
|
||||
///
|
||||
/// Writers may be closed and reopened (and a new file created) based on the dataset
|
||||
/// write options (for example, max_rows_per_file or max_open_files)
|
||||
///
|
||||
/// The dataset writer enforces its own back pressure based on the # of rows (as opposed
|
||||
/// to # of batches which is how it is typically enforced elsewhere) and # of files.
|
||||
class ARROW_DS_EXPORT DatasetWriter {
|
||||
public:
|
||||
/// \brief Create a dataset writer
|
||||
///
|
||||
/// Will fail if basename_template is invalid or if there is existing data and
|
||||
/// existing_data_behavior is kError
|
||||
///
|
||||
/// \param write_options options to control how the data should be written
|
||||
/// \param max_rows_queued max # of rows allowed to be queued before the dataset_writer
|
||||
/// will ask for backpressure
|
||||
static Result<std::unique_ptr<DatasetWriter>> Make(
|
||||
FileSystemDatasetWriteOptions write_options, util::AsyncTaskScheduler* scheduler,
|
||||
std::function<void()> pause_callback, std::function<void()> resume_callback,
|
||||
std::function<void()> finish_callback,
|
||||
uint64_t max_rows_queued = kDefaultDatasetWriterMaxRowsQueued);
|
||||
|
||||
~DatasetWriter();
|
||||
|
||||
/// \brief Write a batch to the dataset
|
||||
/// \param[in] batch The batch to write
|
||||
/// \param[in] directory The directory to write to
|
||||
///
|
||||
/// Note: The written filename will be {directory}/{filename_factory(i)} where i is a
|
||||
/// counter controlled by `max_open_files` and `max_rows_per_file`
|
||||
///
|
||||
/// If multiple WriteRecordBatch calls arrive with the same `directory` then the batches
|
||||
/// may be written to the same file.
|
||||
///
|
||||
/// The returned future will be marked finished when the record batch has been queued
|
||||
/// to be written. If the returned future is unfinished then this indicates the dataset
|
||||
/// writer's queue is full and the data provider should pause.
|
||||
///
|
||||
/// This method is NOT async reentrant. The returned future will only be unfinished
|
||||
/// if back pressure needs to be applied. Async reentrancy is not necessary for
|
||||
/// concurrent writes to happen. Calling this method again before the previous future
|
||||
/// completes will not just violate max_rows_queued but likely lead to race conditions.
|
||||
///
|
||||
/// One thing to note is that the ordering of your data can affect your maximum
|
||||
/// potential parallelism. If this seems odd then consider a dataset where the first
|
||||
/// 1000 batches go to the same directory and then the 1001st batch goes to a different
|
||||
/// directory. The only way to get two parallel writes immediately would be to queue
|
||||
/// all 1000 pending writes to the first directory.
|
||||
void WriteRecordBatch(std::shared_ptr<RecordBatch> batch, const std::string& directory,
|
||||
const std::string& prefix = "");
|
||||
|
||||
/// Finish all pending writes and close any open files
|
||||
void Finish();
|
||||
|
||||
protected:
|
||||
DatasetWriter(FileSystemDatasetWriteOptions write_options,
|
||||
util::AsyncTaskScheduler* scheduler, std::function<void()> pause_callback,
|
||||
std::function<void()> resume_callback,
|
||||
std::function<void()> finish_callback,
|
||||
uint64_t max_rows_queued = kDefaultDatasetWriterMaxRowsQueued);
|
||||
|
||||
class DatasetWriterImpl;
|
||||
std::unique_ptr<DatasetWriterImpl> impl_;
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
} // namespace dataset
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,271 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
/// Logic for automatically determining the structure of multi-file
|
||||
/// dataset with possible partitioning according to available
|
||||
/// partitioning
|
||||
|
||||
// This API is EXPERIMENTAL.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <variant>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/dataset/partition.h"
|
||||
#include "arrow/dataset/type_fwd.h"
|
||||
#include "arrow/dataset/visibility.h"
|
||||
#include "arrow/filesystem/type_fwd.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/util/macros.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace dataset {
|
||||
|
||||
/// \defgroup dataset-discovery Discovery API
|
||||
///
|
||||
/// @{
|
||||
|
||||
struct InspectOptions {
|
||||
/// See `fragments` property.
|
||||
static constexpr int kInspectAllFragments = -1;
|
||||
|
||||
/// Indicate how many fragments should be inspected to infer the unified dataset
|
||||
/// schema. Limiting the number of fragments accessed improves the latency of
|
||||
/// the discovery process when dealing with a high number of fragments and/or
|
||||
/// high latency file systems.
|
||||
///
|
||||
/// The default value of `1` inspects the schema of the first (in no particular
|
||||
/// order) fragment only. If the dataset has a uniform schema for all fragments,
|
||||
/// this default is the optimal value. In order to inspect all fragments and
|
||||
/// robustly unify their potentially varying schemas, set this option to
|
||||
/// `kInspectAllFragments`. A value of `0` disables inspection of fragments
|
||||
/// altogether so only the partitioning schema will be inspected.
|
||||
int fragments = 1;
|
||||
};
|
||||
|
||||
struct FinishOptions {
|
||||
/// Finalize the dataset with this given schema. If the schema is not
|
||||
/// provided, infer the schema via the Inspect, see the `inspect_options`
|
||||
/// property.
|
||||
std::shared_ptr<Schema> schema = NULLPTR;
|
||||
|
||||
/// If the schema is not provided, it will be discovered by passing the
|
||||
/// following options to `DatasetDiscovery::Inspect`.
|
||||
InspectOptions inspect_options{};
|
||||
|
||||
/// Indicate if the given Schema (when specified), should be validated against
|
||||
/// the fragments' schemas. `inspect_options` will control how many fragments
|
||||
/// are checked.
|
||||
bool validate_fragments = false;
|
||||
};
|
||||
|
||||
/// \brief DatasetFactory provides a way to inspect/discover a Dataset's expected
|
||||
/// schema before materializing said Dataset.
|
||||
class ARROW_DS_EXPORT DatasetFactory {
|
||||
public:
|
||||
/// \brief Get the schemas of the Fragments and Partitioning.
|
||||
virtual Result<std::vector<std::shared_ptr<Schema>>> InspectSchemas(
|
||||
InspectOptions options) = 0;
|
||||
|
||||
/// \brief Get unified schema for the resulting Dataset.
|
||||
Result<std::shared_ptr<Schema>> Inspect(InspectOptions options = {});
|
||||
|
||||
/// \brief Create a Dataset
|
||||
Result<std::shared_ptr<Dataset>> Finish();
|
||||
/// \brief Create a Dataset with the given schema (see \a InspectOptions::schema)
|
||||
Result<std::shared_ptr<Dataset>> Finish(std::shared_ptr<Schema> schema);
|
||||
/// \brief Create a Dataset with the given options
|
||||
virtual Result<std::shared_ptr<Dataset>> Finish(FinishOptions options) = 0;
|
||||
|
||||
/// \brief Optional root partition for the resulting Dataset.
|
||||
const compute::Expression& root_partition() const { return root_partition_; }
|
||||
/// \brief Set the root partition for the resulting Dataset.
|
||||
Status SetRootPartition(compute::Expression partition) {
|
||||
root_partition_ = std::move(partition);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
virtual ~DatasetFactory() = default;
|
||||
|
||||
protected:
|
||||
DatasetFactory();
|
||||
|
||||
compute::Expression root_partition_;
|
||||
};
|
||||
|
||||
/// @}
|
||||
|
||||
/// \brief DatasetFactory provides a way to inspect/discover a Dataset's
|
||||
/// expected schema before materialization.
|
||||
/// \ingroup dataset-implementations
|
||||
class ARROW_DS_EXPORT UnionDatasetFactory : public DatasetFactory {
|
||||
public:
|
||||
static Result<std::shared_ptr<DatasetFactory>> Make(
|
||||
std::vector<std::shared_ptr<DatasetFactory>> factories);
|
||||
|
||||
/// \brief Return the list of child DatasetFactory
|
||||
const std::vector<std::shared_ptr<DatasetFactory>>& factories() const {
|
||||
return factories_;
|
||||
}
|
||||
|
||||
/// \brief Get the schemas of the Datasets.
|
||||
///
|
||||
/// Instead of applying options globally, it applies at each child factory.
|
||||
/// This will not respect `options.fragments` exactly, but will respect the
|
||||
/// spirit of peeking the first fragments or all of them.
|
||||
Result<std::vector<std::shared_ptr<Schema>>> InspectSchemas(
|
||||
InspectOptions options) override;
|
||||
|
||||
/// \brief Create a Dataset.
|
||||
Result<std::shared_ptr<Dataset>> Finish(FinishOptions options) override;
|
||||
|
||||
protected:
|
||||
explicit UnionDatasetFactory(std::vector<std::shared_ptr<DatasetFactory>> factories);
|
||||
|
||||
std::vector<std::shared_ptr<DatasetFactory>> factories_;
|
||||
};
|
||||
|
||||
/// \ingroup dataset-filesystem
|
||||
struct FileSystemFactoryOptions {
|
||||
/// Either an explicit Partitioning or a PartitioningFactory to discover one.
|
||||
///
|
||||
/// If a factory is provided, it will be used to infer a schema for partition fields
|
||||
/// based on file and directory paths then construct a Partitioning. The default
|
||||
/// is a Partitioning which will yield no partition information.
|
||||
///
|
||||
/// The (explicit or discovered) partitioning will be applied to discovered files
|
||||
/// and the resulting partition information embedded in the Dataset.
|
||||
PartitioningOrFactory partitioning{Partitioning::Default()};
|
||||
|
||||
/// For the purposes of applying the partitioning, paths will be stripped
|
||||
/// of the partition_base_dir. Files not matching the partition_base_dir
|
||||
/// prefix will be skipped for partition discovery. The ignored files will still
|
||||
/// be part of the Dataset, but will not have partition information.
|
||||
///
|
||||
/// Example:
|
||||
/// partition_base_dir = "/dataset";
|
||||
///
|
||||
/// - "/dataset/US/sales.csv" -> "US/sales.csv" will be given to the partitioning
|
||||
///
|
||||
/// - "/home/john/late_sales.csv" -> Will be ignored for partition discovery.
|
||||
///
|
||||
/// This is useful for partitioning which parses directory when ordering
|
||||
/// is important, e.g. DirectoryPartitioning.
|
||||
std::string partition_base_dir;
|
||||
|
||||
/// Invalid files (via selector or explicitly) will be excluded by checking
|
||||
/// with the FileFormat::IsSupported method. This will incur IO for each files
|
||||
/// in a serial and single threaded fashion. Disabling this feature will skip the
|
||||
/// IO, but unsupported files may be present in the Dataset
|
||||
/// (resulting in an error at scan time).
|
||||
bool exclude_invalid_files = false;
|
||||
|
||||
/// When discovering from a Selector (and not from an explicit file list), ignore
|
||||
/// files and directories matching any of these prefixes.
|
||||
///
|
||||
/// Example (with selector = "/dataset/**"):
|
||||
/// selector_ignore_prefixes = {"_", ".DS_STORE" };
|
||||
///
|
||||
/// - "/dataset/data.csv" -> not ignored
|
||||
/// - "/dataset/_metadata" -> ignored
|
||||
/// - "/dataset/.DS_STORE" -> ignored
|
||||
/// - "/dataset/_hidden/dat" -> ignored
|
||||
/// - "/dataset/nested/.DS_STORE" -> ignored
|
||||
std::vector<std::string> selector_ignore_prefixes = {
|
||||
".",
|
||||
"_",
|
||||
};
|
||||
};
|
||||
|
||||
/// \brief FileSystemDatasetFactory creates a Dataset from a vector of
|
||||
/// fs::FileInfo or a fs::FileSelector.
|
||||
/// \ingroup dataset-filesystem
|
||||
class ARROW_DS_EXPORT FileSystemDatasetFactory : public DatasetFactory {
|
||||
public:
|
||||
/// \brief Build a FileSystemDatasetFactory from an explicit list of
|
||||
/// paths.
|
||||
///
|
||||
/// \param[in] filesystem passed to FileSystemDataset
|
||||
/// \param[in] paths passed to FileSystemDataset
|
||||
/// \param[in] format passed to FileSystemDataset
|
||||
/// \param[in] options see FileSystemFactoryOptions for more information.
|
||||
static Result<std::shared_ptr<DatasetFactory>> Make(
|
||||
std::shared_ptr<fs::FileSystem> filesystem, const std::vector<std::string>& paths,
|
||||
std::shared_ptr<FileFormat> format, FileSystemFactoryOptions options);
|
||||
|
||||
/// \brief Build a FileSystemDatasetFactory from a fs::FileSelector.
|
||||
///
|
||||
/// The selector will expand to a vector of FileInfo. The expansion/crawling
|
||||
/// is performed in this function call. Thus, the finalized Dataset is
|
||||
/// working with a snapshot of the filesystem.
|
||||
//
|
||||
/// If options.partition_base_dir is not provided, it will be overwritten
|
||||
/// with selector.base_dir.
|
||||
///
|
||||
/// \param[in] filesystem passed to FileSystemDataset
|
||||
/// \param[in] selector used to crawl and search files
|
||||
/// \param[in] format passed to FileSystemDataset
|
||||
/// \param[in] options see FileSystemFactoryOptions for more information.
|
||||
static Result<std::shared_ptr<DatasetFactory>> Make(
|
||||
std::shared_ptr<fs::FileSystem> filesystem, fs::FileSelector selector,
|
||||
std::shared_ptr<FileFormat> format, FileSystemFactoryOptions options);
|
||||
|
||||
/// \brief Build a FileSystemDatasetFactory from an uri including filesystem
|
||||
/// information.
|
||||
///
|
||||
/// \param[in] uri passed to FileSystemDataset
|
||||
/// \param[in] format passed to FileSystemDataset
|
||||
/// \param[in] options see FileSystemFactoryOptions for more information.
|
||||
static Result<std::shared_ptr<DatasetFactory>> Make(std::string uri,
|
||||
std::shared_ptr<FileFormat> format,
|
||||
FileSystemFactoryOptions options);
|
||||
|
||||
/// \brief Build a FileSystemDatasetFactory from an explicit list of
|
||||
/// file information.
|
||||
///
|
||||
/// \param[in] filesystem passed to FileSystemDataset
|
||||
/// \param[in] files passed to FileSystemDataset
|
||||
/// \param[in] format passed to FileSystemDataset
|
||||
/// \param[in] options see FileSystemFactoryOptions for more information.
|
||||
static Result<std::shared_ptr<DatasetFactory>> Make(
|
||||
std::shared_ptr<fs::FileSystem> filesystem, const std::vector<fs::FileInfo>& files,
|
||||
std::shared_ptr<FileFormat> format, FileSystemFactoryOptions options);
|
||||
|
||||
Result<std::vector<std::shared_ptr<Schema>>> InspectSchemas(
|
||||
InspectOptions options) override;
|
||||
|
||||
Result<std::shared_ptr<Dataset>> Finish(FinishOptions options) override;
|
||||
|
||||
protected:
|
||||
FileSystemDatasetFactory(std::vector<fs::FileInfo> files,
|
||||
std::shared_ptr<fs::FileSystem> filesystem,
|
||||
std::shared_ptr<FileFormat> format,
|
||||
FileSystemFactoryOptions options);
|
||||
|
||||
Result<std::shared_ptr<Schema>> PartitionSchema();
|
||||
|
||||
std::vector<fs::FileInfo> files_;
|
||||
std::shared_ptr<fs::FileSystem> fs_;
|
||||
std::shared_ptr<FileFormat> format_;
|
||||
FileSystemFactoryOptions options_;
|
||||
};
|
||||
|
||||
} // namespace dataset
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,479 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// This API is EXPERIMENTAL.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/buffer.h"
|
||||
#include "arrow/dataset/dataset.h"
|
||||
#include "arrow/dataset/partition.h"
|
||||
#include "arrow/dataset/scanner.h"
|
||||
#include "arrow/dataset/type_fwd.h"
|
||||
#include "arrow/dataset/visibility.h"
|
||||
#include "arrow/filesystem/filesystem.h"
|
||||
#include "arrow/io/file.h"
|
||||
#include "arrow/util/compression.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
namespace dataset {
|
||||
|
||||
/// \defgroup dataset-file-formats File formats for reading and writing datasets
|
||||
/// \defgroup dataset-filesystem File system datasets
|
||||
///
|
||||
/// @{
|
||||
|
||||
/// \brief The path and filesystem where an actual file is located or a buffer which can
|
||||
/// be read like a file
|
||||
class ARROW_DS_EXPORT FileSource : public util::EqualityComparable<FileSource> {
|
||||
public:
|
||||
FileSource(std::string path, std::shared_ptr<fs::FileSystem> filesystem,
|
||||
Compression::type compression = Compression::UNCOMPRESSED)
|
||||
: file_info_(std::move(path)),
|
||||
filesystem_(std::move(filesystem)),
|
||||
compression_(compression) {}
|
||||
|
||||
FileSource(fs::FileInfo info, std::shared_ptr<fs::FileSystem> filesystem,
|
||||
Compression::type compression = Compression::UNCOMPRESSED)
|
||||
: file_info_(std::move(info)),
|
||||
filesystem_(std::move(filesystem)),
|
||||
compression_(compression) {}
|
||||
|
||||
explicit FileSource(std::shared_ptr<Buffer> buffer,
|
||||
Compression::type compression = Compression::UNCOMPRESSED)
|
||||
: buffer_(std::move(buffer)), compression_(compression) {}
|
||||
|
||||
using CustomOpen = std::function<Result<std::shared_ptr<io::RandomAccessFile>>()>;
|
||||
FileSource(CustomOpen open, int64_t size)
|
||||
: custom_open_(std::move(open)), custom_size_(size) {}
|
||||
|
||||
using CustomOpenWithCompression =
|
||||
std::function<Result<std::shared_ptr<io::RandomAccessFile>>(Compression::type)>;
|
||||
FileSource(CustomOpenWithCompression open_with_compression, int64_t size,
|
||||
Compression::type compression = Compression::UNCOMPRESSED)
|
||||
: custom_open_(std::bind(std::move(open_with_compression), compression)),
|
||||
custom_size_(size),
|
||||
compression_(compression) {}
|
||||
|
||||
FileSource(std::shared_ptr<io::RandomAccessFile> file, int64_t size,
|
||||
Compression::type compression = Compression::UNCOMPRESSED)
|
||||
: custom_open_([=] { return ToResult(file); }),
|
||||
custom_size_(size),
|
||||
compression_(compression) {}
|
||||
|
||||
explicit FileSource(std::shared_ptr<io::RandomAccessFile> file,
|
||||
Compression::type compression = Compression::UNCOMPRESSED);
|
||||
|
||||
FileSource() : custom_open_(CustomOpen{&InvalidOpen}) {}
|
||||
|
||||
static std::vector<FileSource> FromPaths(const std::shared_ptr<fs::FileSystem>& fs,
|
||||
std::vector<std::string> paths) {
|
||||
std::vector<FileSource> sources;
|
||||
for (auto&& path : paths) {
|
||||
sources.emplace_back(std::move(path), fs);
|
||||
}
|
||||
return sources;
|
||||
}
|
||||
|
||||
/// \brief Return the type of raw compression on the file, if any.
|
||||
Compression::type compression() const { return compression_; }
|
||||
|
||||
/// \brief Return the file path, if any. Only valid when file source wraps a path.
|
||||
const std::string& path() const {
|
||||
static std::string buffer_path = "<Buffer>";
|
||||
static std::string custom_open_path = "<Buffer>";
|
||||
return filesystem_ ? file_info_.path() : buffer_ ? buffer_path : custom_open_path;
|
||||
}
|
||||
|
||||
/// \brief Return the filesystem, if any. Otherwise returns nullptr
|
||||
const std::shared_ptr<fs::FileSystem>& filesystem() const { return filesystem_; }
|
||||
|
||||
/// \brief Return the buffer containing the file, if any. Otherwise returns nullptr
|
||||
const std::shared_ptr<Buffer>& buffer() const { return buffer_; }
|
||||
|
||||
/// \brief Get a RandomAccessFile which views this file source
|
||||
Result<std::shared_ptr<io::RandomAccessFile>> Open() const;
|
||||
|
||||
/// \brief Get the size (in bytes) of the file or buffer
|
||||
/// If the file is compressed this should be the compressed (on-disk) size.
|
||||
int64_t Size() const;
|
||||
|
||||
/// \brief Get an InputStream which views this file source (and decompresses if needed)
|
||||
/// \param[in] compression If nullopt, guess the compression scheme from the
|
||||
/// filename, else decompress with the given codec
|
||||
Result<std::shared_ptr<io::InputStream>> OpenCompressed(
|
||||
std::optional<Compression::type> compression = std::nullopt) const;
|
||||
|
||||
/// \brief equality comparison with another FileSource
|
||||
bool Equals(const FileSource& other) const;
|
||||
|
||||
private:
|
||||
static Result<std::shared_ptr<io::RandomAccessFile>> InvalidOpen() {
|
||||
return Status::Invalid("Called Open() on an uninitialized FileSource");
|
||||
}
|
||||
|
||||
fs::FileInfo file_info_;
|
||||
std::shared_ptr<fs::FileSystem> filesystem_;
|
||||
std::shared_ptr<Buffer> buffer_;
|
||||
CustomOpen custom_open_;
|
||||
int64_t custom_size_ = 0;
|
||||
Compression::type compression_ = Compression::UNCOMPRESSED;
|
||||
};
|
||||
|
||||
/// \brief Base class for file format implementation
|
||||
class ARROW_DS_EXPORT FileFormat : public std::enable_shared_from_this<FileFormat> {
|
||||
public:
|
||||
/// Options affecting how this format is scanned.
|
||||
///
|
||||
/// The options here can be overridden at scan time.
|
||||
std::shared_ptr<FragmentScanOptions> default_fragment_scan_options;
|
||||
|
||||
virtual ~FileFormat() = default;
|
||||
|
||||
/// \brief The name identifying the kind of file format
|
||||
virtual std::string type_name() const = 0;
|
||||
|
||||
virtual bool Equals(const FileFormat& other) const = 0;
|
||||
|
||||
/// \brief Indicate if the FileSource is supported/readable by this format.
|
||||
virtual Result<bool> IsSupported(const FileSource& source) const = 0;
|
||||
|
||||
/// \brief Return the schema of the file if possible.
|
||||
virtual Result<std::shared_ptr<Schema>> Inspect(const FileSource& source) const = 0;
|
||||
|
||||
/// \brief Learn what we need about the file before we start scanning it
|
||||
virtual Future<std::shared_ptr<InspectedFragment>> InspectFragment(
|
||||
const FileSource& source, const FragmentScanOptions* format_options,
|
||||
compute::ExecContext* exec_context) const;
|
||||
|
||||
virtual Result<RecordBatchGenerator> ScanBatchesAsync(
|
||||
const std::shared_ptr<ScanOptions>& options,
|
||||
const std::shared_ptr<FileFragment>& file) const = 0;
|
||||
|
||||
virtual Future<std::optional<int64_t>> CountRows(
|
||||
const std::shared_ptr<FileFragment>& file, compute::Expression predicate,
|
||||
const std::shared_ptr<ScanOptions>& options);
|
||||
|
||||
virtual Future<std::shared_ptr<FragmentScanner>> BeginScan(
|
||||
const FragmentScanRequest& request, const InspectedFragment& inspected_fragment,
|
||||
const FragmentScanOptions* format_options,
|
||||
compute::ExecContext* exec_context) const;
|
||||
|
||||
/// \brief Open a fragment
|
||||
virtual Result<std::shared_ptr<FileFragment>> MakeFragment(
|
||||
FileSource source, compute::Expression partition_expression,
|
||||
std::shared_ptr<Schema> physical_schema);
|
||||
|
||||
/// \brief Create a FileFragment for a FileSource.
|
||||
Result<std::shared_ptr<FileFragment>> MakeFragment(
|
||||
FileSource source, compute::Expression partition_expression);
|
||||
|
||||
/// \brief Create a FileFragment for a FileSource.
|
||||
Result<std::shared_ptr<FileFragment>> MakeFragment(
|
||||
FileSource source, std::shared_ptr<Schema> physical_schema = NULLPTR);
|
||||
|
||||
/// \brief Create a writer for this format.
|
||||
virtual Result<std::shared_ptr<FileWriter>> MakeWriter(
|
||||
std::shared_ptr<io::OutputStream> destination, std::shared_ptr<Schema> schema,
|
||||
std::shared_ptr<FileWriteOptions> options,
|
||||
fs::FileLocator destination_locator) const = 0;
|
||||
|
||||
/// \brief Get default write options for this format.
|
||||
///
|
||||
/// May return null shared_ptr if this file format does not yet support
|
||||
/// writing datasets.
|
||||
virtual std::shared_ptr<FileWriteOptions> DefaultWriteOptions() = 0;
|
||||
|
||||
protected:
|
||||
explicit FileFormat(std::shared_ptr<FragmentScanOptions> default_fragment_scan_options)
|
||||
: default_fragment_scan_options(std::move(default_fragment_scan_options)) {}
|
||||
};
|
||||
|
||||
/// \brief A Fragment that is stored in a file with a known format
|
||||
class ARROW_DS_EXPORT FileFragment : public Fragment,
|
||||
public util::EqualityComparable<FileFragment> {
|
||||
public:
|
||||
Result<RecordBatchGenerator> ScanBatchesAsync(
|
||||
const std::shared_ptr<ScanOptions>& options) override;
|
||||
Future<std::optional<int64_t>> CountRows(
|
||||
compute::Expression predicate,
|
||||
const std::shared_ptr<ScanOptions>& options) override;
|
||||
Future<std::shared_ptr<FragmentScanner>> BeginScan(
|
||||
const FragmentScanRequest& request, const InspectedFragment& inspected_fragment,
|
||||
const FragmentScanOptions* format_options,
|
||||
compute::ExecContext* exec_context) override;
|
||||
Future<std::shared_ptr<InspectedFragment>> InspectFragment(
|
||||
const FragmentScanOptions* format_options,
|
||||
compute::ExecContext* exec_context) override;
|
||||
|
||||
std::string type_name() const override { return format_->type_name(); }
|
||||
std::string ToString() const override { return source_.path(); };
|
||||
|
||||
const FileSource& source() const { return source_; }
|
||||
const std::shared_ptr<FileFormat>& format() const { return format_; }
|
||||
|
||||
bool Equals(const FileFragment& other) const;
|
||||
|
||||
protected:
|
||||
FileFragment(FileSource source, std::shared_ptr<FileFormat> format,
|
||||
compute::Expression partition_expression,
|
||||
std::shared_ptr<Schema> physical_schema)
|
||||
: Fragment(std::move(partition_expression), std::move(physical_schema)),
|
||||
source_(std::move(source)),
|
||||
format_(std::move(format)) {}
|
||||
|
||||
Result<std::shared_ptr<Schema>> ReadPhysicalSchemaImpl() override;
|
||||
|
||||
FileSource source_;
|
||||
std::shared_ptr<FileFormat> format_;
|
||||
|
||||
friend class FileFormat;
|
||||
};
|
||||
|
||||
/// \brief A Dataset of FileFragments.
|
||||
///
|
||||
/// A FileSystemDataset is composed of one or more FileFragment. The fragments
|
||||
/// are independent and don't need to share the same format and/or filesystem.
|
||||
class ARROW_DS_EXPORT FileSystemDataset : public Dataset {
|
||||
public:
|
||||
/// \brief Create a FileSystemDataset.
|
||||
///
|
||||
/// \param[in] schema the schema of the dataset
|
||||
/// \param[in] root_partition the partition expression of the dataset
|
||||
/// \param[in] format the format of each FileFragment.
|
||||
/// \param[in] filesystem the filesystem of each FileFragment, or nullptr if the
|
||||
/// fragments wrap buffers.
|
||||
/// \param[in] fragments list of fragments to create the dataset from.
|
||||
/// \param[in] partitioning the Partitioning object in case the dataset is created
|
||||
/// with a known partitioning (e.g. from a discovered partitioning
|
||||
/// through a DatasetFactory), or nullptr if not known.
|
||||
///
|
||||
/// Note that fragments wrapping files resident in differing filesystems are not
|
||||
/// permitted; to work with multiple filesystems use a UnionDataset.
|
||||
///
|
||||
/// \return A constructed dataset.
|
||||
static Result<std::shared_ptr<FileSystemDataset>> Make(
|
||||
std::shared_ptr<Schema> schema, compute::Expression root_partition,
|
||||
std::shared_ptr<FileFormat> format, std::shared_ptr<fs::FileSystem> filesystem,
|
||||
std::vector<std::shared_ptr<FileFragment>> fragments,
|
||||
std::shared_ptr<Partitioning> partitioning = NULLPTR);
|
||||
|
||||
/// \brief Write a dataset.
|
||||
static Status Write(const FileSystemDatasetWriteOptions& write_options,
|
||||
std::shared_ptr<Scanner> scanner);
|
||||
|
||||
/// \brief Return the type name of the dataset.
|
||||
std::string type_name() const override { return "filesystem"; }
|
||||
|
||||
/// \brief Replace the schema of the dataset.
|
||||
Result<std::shared_ptr<Dataset>> ReplaceSchema(
|
||||
std::shared_ptr<Schema> schema) const override;
|
||||
|
||||
/// \brief Return the path of files.
|
||||
std::vector<std::string> files() const;
|
||||
|
||||
/// \brief Return the format.
|
||||
const std::shared_ptr<FileFormat>& format() const { return format_; }
|
||||
|
||||
/// \brief Return the filesystem. May be nullptr if the fragments wrap buffers.
|
||||
const std::shared_ptr<fs::FileSystem>& filesystem() const { return filesystem_; }
|
||||
|
||||
/// \brief Return the partitioning. May be nullptr if the dataset was not constructed
|
||||
/// with a partitioning.
|
||||
const std::shared_ptr<Partitioning>& partitioning() const { return partitioning_; }
|
||||
|
||||
std::string ToString() const;
|
||||
|
||||
protected:
|
||||
struct FragmentSubtrees;
|
||||
|
||||
explicit FileSystemDataset(std::shared_ptr<Schema> schema)
|
||||
: Dataset(std::move(schema)) {}
|
||||
|
||||
FileSystemDataset(std::shared_ptr<Schema> schema,
|
||||
compute::Expression partition_expression)
|
||||
: Dataset(std::move(schema), partition_expression) {}
|
||||
|
||||
Result<FragmentIterator> GetFragmentsImpl(compute::Expression predicate) override;
|
||||
|
||||
void SetupSubtreePruning();
|
||||
|
||||
std::shared_ptr<FileFormat> format_;
|
||||
std::shared_ptr<fs::FileSystem> filesystem_;
|
||||
std::vector<std::shared_ptr<FileFragment>> fragments_;
|
||||
std::shared_ptr<Partitioning> partitioning_;
|
||||
|
||||
std::shared_ptr<FragmentSubtrees> subtrees_;
|
||||
};
|
||||
|
||||
/// \brief Options for writing a file of this format.
|
||||
class ARROW_DS_EXPORT FileWriteOptions {
|
||||
public:
|
||||
virtual ~FileWriteOptions() = default;
|
||||
|
||||
const std::shared_ptr<FileFormat>& format() const { return format_; }
|
||||
|
||||
std::string type_name() const { return format_->type_name(); }
|
||||
|
||||
protected:
|
||||
explicit FileWriteOptions(std::shared_ptr<FileFormat> format)
|
||||
: format_(std::move(format)) {}
|
||||
|
||||
std::shared_ptr<FileFormat> format_;
|
||||
};
|
||||
|
||||
/// \brief A writer for this format.
|
||||
class ARROW_DS_EXPORT FileWriter {
|
||||
public:
|
||||
virtual ~FileWriter() = default;
|
||||
|
||||
/// \brief Write the given batch.
|
||||
virtual Status Write(const std::shared_ptr<RecordBatch>& batch) = 0;
|
||||
|
||||
/// \brief Write all batches from the reader.
|
||||
Status Write(RecordBatchReader* batches);
|
||||
|
||||
/// \brief Indicate that writing is done.
|
||||
virtual Future<> Finish();
|
||||
|
||||
const std::shared_ptr<FileFormat>& format() const { return options_->format(); }
|
||||
const std::shared_ptr<Schema>& schema() const { return schema_; }
|
||||
const std::shared_ptr<FileWriteOptions>& options() const { return options_; }
|
||||
const fs::FileLocator& destination() const { return destination_locator_; }
|
||||
|
||||
/// \brief After Finish() is called, provides number of bytes written to file.
|
||||
Result<int64_t> GetBytesWritten() const;
|
||||
|
||||
protected:
|
||||
FileWriter(std::shared_ptr<Schema> schema, std::shared_ptr<FileWriteOptions> options,
|
||||
std::shared_ptr<io::OutputStream> destination,
|
||||
fs::FileLocator destination_locator)
|
||||
: schema_(std::move(schema)),
|
||||
options_(std::move(options)),
|
||||
destination_(std::move(destination)),
|
||||
destination_locator_(std::move(destination_locator)) {}
|
||||
|
||||
virtual Future<> FinishInternal() = 0;
|
||||
|
||||
std::shared_ptr<Schema> schema_;
|
||||
std::shared_ptr<FileWriteOptions> options_;
|
||||
std::shared_ptr<io::OutputStream> destination_;
|
||||
fs::FileLocator destination_locator_;
|
||||
std::optional<int64_t> bytes_written_;
|
||||
};
|
||||
|
||||
/// \brief Options for writing a dataset.
|
||||
struct ARROW_DS_EXPORT FileSystemDatasetWriteOptions {
|
||||
/// Options for individual fragment writing.
|
||||
std::shared_ptr<FileWriteOptions> file_write_options;
|
||||
|
||||
/// FileSystem into which a dataset will be written.
|
||||
std::shared_ptr<fs::FileSystem> filesystem;
|
||||
|
||||
/// Root directory into which the dataset will be written.
|
||||
std::string base_dir;
|
||||
|
||||
/// Partitioning used to generate fragment paths.
|
||||
std::shared_ptr<Partitioning> partitioning;
|
||||
|
||||
/// Maximum number of partitions any batch may be written into, default is 1K.
|
||||
int max_partitions = 1024;
|
||||
|
||||
/// Template string used to generate fragment basenames.
|
||||
/// {i} will be replaced by an auto incremented integer.
|
||||
std::string basename_template;
|
||||
|
||||
/// If greater than 0 then this will limit the maximum number of files that can be left
|
||||
/// open. If an attempt is made to open too many files then the least recently used file
|
||||
/// will be closed. If this setting is set too low you may end up fragmenting your data
|
||||
/// into many small files.
|
||||
///
|
||||
/// The default is 900 which also allows some # of files to be open by the scanner
|
||||
/// before hitting the default Linux limit of 1024
|
||||
uint32_t max_open_files = 900;
|
||||
|
||||
/// If greater than 0 then this will limit how many rows are placed in any single file.
|
||||
/// Otherwise there will be no limit and one file will be created in each output
|
||||
/// directory unless files need to be closed to respect max_open_files
|
||||
uint64_t max_rows_per_file = 0;
|
||||
|
||||
/// If greater than 0 then this will cause the dataset writer to batch incoming data
|
||||
/// and only write the row groups to the disk when sufficient rows have accumulated.
|
||||
/// The final row group size may be less than this value and other options such as
|
||||
/// `max_open_files` or `max_rows_per_file` lead to smaller row group sizes.
|
||||
uint64_t min_rows_per_group = 0;
|
||||
|
||||
/// If greater than 0 then the dataset writer may split up large incoming batches into
|
||||
/// multiple row groups. If this value is set then min_rows_per_group should also be
|
||||
/// set or else you may end up with very small row groups (e.g. if the incoming row
|
||||
/// group size is just barely larger than this value).
|
||||
uint64_t max_rows_per_group = 1 << 20;
|
||||
|
||||
/// Controls what happens if an output directory already exists.
|
||||
ExistingDataBehavior existing_data_behavior = ExistingDataBehavior::kError;
|
||||
|
||||
/// \brief If false the dataset writer will not create directories
|
||||
/// This is mainly intended for filesystems that do not require directories such as S3.
|
||||
bool create_dir = true;
|
||||
|
||||
/// Callback to be invoked against all FileWriters before
|
||||
/// they are finalized with FileWriter::Finish().
|
||||
std::function<Status(FileWriter*)> writer_pre_finish = [](FileWriter*) {
|
||||
return Status::OK();
|
||||
};
|
||||
|
||||
/// Callback to be invoked against all FileWriters after they have
|
||||
/// called FileWriter::Finish().
|
||||
std::function<Status(FileWriter*)> writer_post_finish = [](FileWriter*) {
|
||||
return Status::OK();
|
||||
};
|
||||
|
||||
const std::shared_ptr<FileFormat>& format() const {
|
||||
return file_write_options->format();
|
||||
}
|
||||
};
|
||||
|
||||
/// \brief Wraps FileSystemDatasetWriteOptions for consumption as compute::ExecNodeOptions
|
||||
class ARROW_DS_EXPORT WriteNodeOptions : public compute::ExecNodeOptions {
|
||||
public:
|
||||
explicit WriteNodeOptions(
|
||||
FileSystemDatasetWriteOptions options,
|
||||
std::shared_ptr<const KeyValueMetadata> custom_metadata = NULLPTR)
|
||||
: write_options(std::move(options)), custom_metadata(std::move(custom_metadata)) {}
|
||||
|
||||
/// \brief Options to control how to write the dataset
|
||||
FileSystemDatasetWriteOptions write_options;
|
||||
/// \brief Optional metadata to attach to written batches
|
||||
std::shared_ptr<const KeyValueMetadata> custom_metadata;
|
||||
};
|
||||
|
||||
/// @}
|
||||
|
||||
namespace internal {
|
||||
ARROW_DS_EXPORT void InitializeDatasetWriter(
|
||||
arrow::compute::ExecFactoryRegistry* registry);
|
||||
}
|
||||
|
||||
} // namespace dataset
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,144 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
|
||||
#include "arrow/csv/options.h"
|
||||
#include "arrow/dataset/dataset.h"
|
||||
#include "arrow/dataset/file_base.h"
|
||||
#include "arrow/dataset/type_fwd.h"
|
||||
#include "arrow/dataset/visibility.h"
|
||||
#include "arrow/ipc/type_fwd.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/util/compression.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace dataset {
|
||||
|
||||
constexpr char kCsvTypeName[] = "csv";
|
||||
|
||||
/// \addtogroup dataset-file-formats
|
||||
///
|
||||
/// @{
|
||||
|
||||
/// \brief A FileFormat implementation that reads from and writes to Csv files
|
||||
class ARROW_DS_EXPORT CsvFileFormat : public FileFormat {
|
||||
public:
|
||||
// TODO(ARROW-18328) Remove this, moved to CsvFragmentScanOptions
|
||||
/// Options affecting the parsing of CSV files
|
||||
csv::ParseOptions parse_options = csv::ParseOptions::Defaults();
|
||||
|
||||
CsvFileFormat();
|
||||
|
||||
std::string type_name() const override { return kCsvTypeName; }
|
||||
|
||||
bool Equals(const FileFormat& other) const override;
|
||||
|
||||
Result<bool> IsSupported(const FileSource& source) const override;
|
||||
|
||||
/// \brief Return the schema of the file if possible.
|
||||
Result<std::shared_ptr<Schema>> Inspect(const FileSource& source) const override;
|
||||
|
||||
Future<std::shared_ptr<FragmentScanner>> BeginScan(
|
||||
const FragmentScanRequest& request, const InspectedFragment& inspected_fragment,
|
||||
const FragmentScanOptions* format_options,
|
||||
compute::ExecContext* exec_context) const override;
|
||||
|
||||
Result<RecordBatchGenerator> ScanBatchesAsync(
|
||||
const std::shared_ptr<ScanOptions>& scan_options,
|
||||
const std::shared_ptr<FileFragment>& file) const override;
|
||||
|
||||
Future<std::shared_ptr<InspectedFragment>> InspectFragment(
|
||||
const FileSource& source, const FragmentScanOptions* format_options,
|
||||
compute::ExecContext* exec_context) const override;
|
||||
|
||||
Future<std::optional<int64_t>> CountRows(
|
||||
const std::shared_ptr<FileFragment>& file, compute::Expression predicate,
|
||||
const std::shared_ptr<ScanOptions>& options) override;
|
||||
|
||||
Result<std::shared_ptr<FileWriter>> MakeWriter(
|
||||
std::shared_ptr<io::OutputStream> destination, std::shared_ptr<Schema> schema,
|
||||
std::shared_ptr<FileWriteOptions> options,
|
||||
fs::FileLocator destination_locator) const override;
|
||||
|
||||
std::shared_ptr<FileWriteOptions> DefaultWriteOptions() override;
|
||||
};
|
||||
|
||||
/// \brief Per-scan options for CSV fragments
|
||||
struct ARROW_DS_EXPORT CsvFragmentScanOptions : public FragmentScanOptions {
|
||||
std::string type_name() const override { return kCsvTypeName; }
|
||||
|
||||
using StreamWrapFunc = std::function<Result<std::shared_ptr<io::InputStream>>(
|
||||
std::shared_ptr<io::InputStream>)>;
|
||||
|
||||
/// CSV conversion options
|
||||
csv::ConvertOptions convert_options = csv::ConvertOptions::Defaults();
|
||||
|
||||
/// CSV reading options
|
||||
///
|
||||
/// Note that use_threads is always ignored.
|
||||
csv::ReadOptions read_options = csv::ReadOptions::Defaults();
|
||||
|
||||
/// CSV parse options
|
||||
csv::ParseOptions parse_options = csv::ParseOptions::Defaults();
|
||||
|
||||
/// Optional stream wrapping function
|
||||
///
|
||||
/// If defined, all open dataset file fragments will be passed
|
||||
/// through this function. One possible use case is to transparently
|
||||
/// transcode all input files from a given character set to utf8.
|
||||
StreamWrapFunc stream_transform_func{};
|
||||
};
|
||||
|
||||
class ARROW_DS_EXPORT CsvFileWriteOptions : public FileWriteOptions {
|
||||
public:
|
||||
/// Options passed to csv::MakeCSVWriter.
|
||||
std::shared_ptr<csv::WriteOptions> write_options;
|
||||
|
||||
protected:
|
||||
explicit CsvFileWriteOptions(std::shared_ptr<FileFormat> format)
|
||||
: FileWriteOptions(std::move(format)) {}
|
||||
|
||||
friend class CsvFileFormat;
|
||||
};
|
||||
|
||||
class ARROW_DS_EXPORT CsvFileWriter : public FileWriter {
|
||||
public:
|
||||
Status Write(const std::shared_ptr<RecordBatch>& batch) override;
|
||||
|
||||
private:
|
||||
CsvFileWriter(std::shared_ptr<io::OutputStream> destination,
|
||||
std::shared_ptr<ipc::RecordBatchWriter> writer,
|
||||
std::shared_ptr<Schema> schema,
|
||||
std::shared_ptr<CsvFileWriteOptions> options,
|
||||
fs::FileLocator destination_locator);
|
||||
|
||||
Future<> FinishInternal() override;
|
||||
|
||||
std::shared_ptr<io::OutputStream> destination_;
|
||||
std::shared_ptr<ipc::RecordBatchWriter> batch_writer_;
|
||||
|
||||
friend class CsvFileFormat;
|
||||
};
|
||||
|
||||
/// @}
|
||||
|
||||
} // namespace dataset
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,123 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// This API is EXPERIMENTAL.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
|
||||
#include "arrow/dataset/file_base.h"
|
||||
#include "arrow/dataset/type_fwd.h"
|
||||
#include "arrow/dataset/visibility.h"
|
||||
#include "arrow/io/type_fwd.h"
|
||||
#include "arrow/ipc/type_fwd.h"
|
||||
#include "arrow/result.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace dataset {
|
||||
|
||||
/// \addtogroup dataset-file-formats
|
||||
///
|
||||
/// @{
|
||||
|
||||
constexpr char kIpcTypeName[] = "ipc";
|
||||
|
||||
/// \brief A FileFormat implementation that reads from and writes to Ipc files
|
||||
class ARROW_DS_EXPORT IpcFileFormat : public FileFormat {
|
||||
public:
|
||||
std::string type_name() const override { return kIpcTypeName; }
|
||||
|
||||
IpcFileFormat();
|
||||
|
||||
bool Equals(const FileFormat& other) const override {
|
||||
return type_name() == other.type_name();
|
||||
}
|
||||
|
||||
Result<bool> IsSupported(const FileSource& source) const override;
|
||||
|
||||
/// \brief Return the schema of the file if possible.
|
||||
Result<std::shared_ptr<Schema>> Inspect(const FileSource& source) const override;
|
||||
|
||||
Result<RecordBatchGenerator> ScanBatchesAsync(
|
||||
const std::shared_ptr<ScanOptions>& options,
|
||||
const std::shared_ptr<FileFragment>& file) const override;
|
||||
|
||||
Future<std::optional<int64_t>> CountRows(
|
||||
const std::shared_ptr<FileFragment>& file, compute::Expression predicate,
|
||||
const std::shared_ptr<ScanOptions>& options) override;
|
||||
|
||||
Result<std::shared_ptr<FileWriter>> MakeWriter(
|
||||
std::shared_ptr<io::OutputStream> destination, std::shared_ptr<Schema> schema,
|
||||
std::shared_ptr<FileWriteOptions> options,
|
||||
fs::FileLocator destination_locator) const override;
|
||||
|
||||
std::shared_ptr<FileWriteOptions> DefaultWriteOptions() override;
|
||||
};
|
||||
|
||||
/// \brief Per-scan options for IPC fragments
|
||||
class ARROW_DS_EXPORT IpcFragmentScanOptions : public FragmentScanOptions {
|
||||
public:
|
||||
std::string type_name() const override { return kIpcTypeName; }
|
||||
|
||||
/// Options passed to the IPC file reader.
|
||||
/// included_fields, memory_pool, and use_threads are ignored.
|
||||
std::shared_ptr<ipc::IpcReadOptions> options;
|
||||
/// If present, the async scanner will enable I/O coalescing.
|
||||
/// This is ignored by the sync scanner.
|
||||
std::shared_ptr<io::CacheOptions> cache_options;
|
||||
};
|
||||
|
||||
class ARROW_DS_EXPORT IpcFileWriteOptions : public FileWriteOptions {
|
||||
public:
|
||||
/// Options passed to ipc::MakeFileWriter. use_threads is ignored
|
||||
std::shared_ptr<ipc::IpcWriteOptions> options;
|
||||
|
||||
/// custom_metadata written to the file's footer
|
||||
std::shared_ptr<const KeyValueMetadata> metadata;
|
||||
|
||||
protected:
|
||||
explicit IpcFileWriteOptions(std::shared_ptr<FileFormat> format)
|
||||
: FileWriteOptions(std::move(format)) {}
|
||||
|
||||
friend class IpcFileFormat;
|
||||
};
|
||||
|
||||
class ARROW_DS_EXPORT IpcFileWriter : public FileWriter {
|
||||
public:
|
||||
Status Write(const std::shared_ptr<RecordBatch>& batch) override;
|
||||
|
||||
private:
|
||||
IpcFileWriter(std::shared_ptr<io::OutputStream> destination,
|
||||
std::shared_ptr<ipc::RecordBatchWriter> writer,
|
||||
std::shared_ptr<Schema> schema,
|
||||
std::shared_ptr<IpcFileWriteOptions> options,
|
||||
fs::FileLocator destination_locator);
|
||||
|
||||
Future<> FinishInternal() override;
|
||||
|
||||
std::shared_ptr<io::OutputStream> destination_;
|
||||
std::shared_ptr<ipc::RecordBatchWriter> batch_writer_;
|
||||
|
||||
friend class IpcFileFormat;
|
||||
};
|
||||
|
||||
/// @}
|
||||
|
||||
} // namespace dataset
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,75 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// This API is EXPERIMENTAL.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
|
||||
#include "arrow/dataset/file_base.h"
|
||||
#include "arrow/dataset/type_fwd.h"
|
||||
#include "arrow/dataset/visibility.h"
|
||||
#include "arrow/io/type_fwd.h"
|
||||
#include "arrow/result.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace dataset {
|
||||
|
||||
/// \addtogroup dataset-file-formats
|
||||
///
|
||||
/// @{
|
||||
|
||||
constexpr char kOrcTypeName[] = "orc";
|
||||
|
||||
/// \brief A FileFormat implementation that reads from and writes to ORC files
|
||||
class ARROW_DS_EXPORT OrcFileFormat : public FileFormat {
|
||||
public:
|
||||
OrcFileFormat();
|
||||
|
||||
std::string type_name() const override { return kOrcTypeName; }
|
||||
|
||||
bool Equals(const FileFormat& other) const override {
|
||||
return type_name() == other.type_name();
|
||||
}
|
||||
|
||||
Result<bool> IsSupported(const FileSource& source) const override;
|
||||
|
||||
/// \brief Return the schema of the file if possible.
|
||||
Result<std::shared_ptr<Schema>> Inspect(const FileSource& source) const override;
|
||||
|
||||
Result<RecordBatchGenerator> ScanBatchesAsync(
|
||||
const std::shared_ptr<ScanOptions>& options,
|
||||
const std::shared_ptr<FileFragment>& file) const override;
|
||||
|
||||
Future<std::optional<int64_t>> CountRows(
|
||||
const std::shared_ptr<FileFragment>& file, compute::Expression predicate,
|
||||
const std::shared_ptr<ScanOptions>& options) override;
|
||||
|
||||
Result<std::shared_ptr<FileWriter>> MakeWriter(
|
||||
std::shared_ptr<io::OutputStream> destination, std::shared_ptr<Schema> schema,
|
||||
std::shared_ptr<FileWriteOptions> options,
|
||||
fs::FileLocator destination_locator) const override;
|
||||
|
||||
std::shared_ptr<FileWriteOptions> DefaultWriteOptions() override;
|
||||
};
|
||||
|
||||
/// @}
|
||||
|
||||
} // namespace dataset
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,374 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// This API is EXPERIMENTAL.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <optional>
|
||||
#include <string>
|
||||
#include <unordered_set>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/dataset/discovery.h"
|
||||
#include "arrow/dataset/file_base.h"
|
||||
#include "arrow/dataset/type_fwd.h"
|
||||
#include "arrow/dataset/visibility.h"
|
||||
#include "arrow/io/caching.h"
|
||||
|
||||
namespace parquet {
|
||||
class ParquetFileReader;
|
||||
class Statistics;
|
||||
class ColumnChunkMetaData;
|
||||
class RowGroupMetaData;
|
||||
class FileMetaData;
|
||||
class FileDecryptionProperties;
|
||||
class FileEncryptionProperties;
|
||||
|
||||
class ReaderProperties;
|
||||
class ArrowReaderProperties;
|
||||
|
||||
class WriterProperties;
|
||||
class ArrowWriterProperties;
|
||||
|
||||
namespace arrow {
|
||||
class FileReader;
|
||||
class FileWriter;
|
||||
struct SchemaManifest;
|
||||
} // namespace arrow
|
||||
} // namespace parquet
|
||||
|
||||
namespace arrow {
|
||||
namespace dataset {
|
||||
|
||||
/// \addtogroup dataset-file-formats
|
||||
///
|
||||
/// @{
|
||||
|
||||
constexpr char kParquetTypeName[] = "parquet";
|
||||
|
||||
/// \brief A FileFormat implementation that reads from Parquet files
|
||||
class ARROW_DS_EXPORT ParquetFileFormat : public FileFormat {
|
||||
public:
|
||||
ParquetFileFormat();
|
||||
|
||||
/// Convenience constructor which copies properties from a parquet::ReaderProperties.
|
||||
/// memory_pool will be ignored.
|
||||
explicit ParquetFileFormat(const parquet::ReaderProperties& reader_properties);
|
||||
|
||||
std::string type_name() const override { return kParquetTypeName; }
|
||||
|
||||
bool Equals(const FileFormat& other) const override;
|
||||
|
||||
struct ReaderOptions {
|
||||
/// \defgroup parquet-file-format-arrow-reader-properties properties which correspond
|
||||
/// to members of parquet::ArrowReaderProperties.
|
||||
///
|
||||
/// We don't embed parquet::ReaderProperties directly because column names (rather
|
||||
/// than indices) are used to indicate dictionary columns, and other options are
|
||||
/// deferred to scan time.
|
||||
///
|
||||
/// @{
|
||||
std::unordered_set<std::string> dict_columns;
|
||||
arrow::TimeUnit::type coerce_int96_timestamp_unit = arrow::TimeUnit::NANO;
|
||||
/// @}
|
||||
} reader_options;
|
||||
|
||||
Result<bool> IsSupported(const FileSource& source) const override;
|
||||
|
||||
/// \brief Return the schema of the file if possible.
|
||||
Result<std::shared_ptr<Schema>> Inspect(const FileSource& source) const override;
|
||||
|
||||
Result<RecordBatchGenerator> ScanBatchesAsync(
|
||||
const std::shared_ptr<ScanOptions>& options,
|
||||
const std::shared_ptr<FileFragment>& file) const override;
|
||||
|
||||
Future<std::optional<int64_t>> CountRows(
|
||||
const std::shared_ptr<FileFragment>& file, compute::Expression predicate,
|
||||
const std::shared_ptr<ScanOptions>& options) override;
|
||||
|
||||
using FileFormat::MakeFragment;
|
||||
|
||||
/// \brief Create a Fragment targeting all RowGroups.
|
||||
Result<std::shared_ptr<FileFragment>> MakeFragment(
|
||||
FileSource source, compute::Expression partition_expression,
|
||||
std::shared_ptr<Schema> physical_schema) override;
|
||||
|
||||
/// \brief Create a Fragment, restricted to the specified row groups.
|
||||
Result<std::shared_ptr<ParquetFileFragment>> MakeFragment(
|
||||
FileSource source, compute::Expression partition_expression,
|
||||
std::shared_ptr<Schema> physical_schema, std::vector<int> row_groups);
|
||||
|
||||
/// \brief Return a FileReader on the given source.
|
||||
Result<std::shared_ptr<parquet::arrow::FileReader>> GetReader(
|
||||
const FileSource& source, const std::shared_ptr<ScanOptions>& options) const;
|
||||
|
||||
Future<std::shared_ptr<parquet::arrow::FileReader>> GetReaderAsync(
|
||||
const FileSource& source, const std::shared_ptr<ScanOptions>& options) const;
|
||||
|
||||
Result<std::shared_ptr<FileWriter>> MakeWriter(
|
||||
std::shared_ptr<io::OutputStream> destination, std::shared_ptr<Schema> schema,
|
||||
std::shared_ptr<FileWriteOptions> options,
|
||||
fs::FileLocator destination_locator) const override;
|
||||
|
||||
std::shared_ptr<FileWriteOptions> DefaultWriteOptions() override;
|
||||
};
|
||||
|
||||
/// \brief A FileFragment with parquet logic.
|
||||
///
|
||||
/// ParquetFileFragment provides a lazy (with respect to IO) interface to
|
||||
/// scan parquet files. Any heavy IO calls are deferred to the Scan() method.
|
||||
///
|
||||
/// The caller can provide an optional list of selected RowGroups to limit the
|
||||
/// number of scanned RowGroups, or to partition the scans across multiple
|
||||
/// threads.
|
||||
///
|
||||
/// Metadata can be explicitly provided, enabling pushdown predicate benefits without
|
||||
/// the potentially heavy IO of loading Metadata from the file system. This can induce
|
||||
/// significant performance boost when scanning high latency file systems.
|
||||
class ARROW_DS_EXPORT ParquetFileFragment : public FileFragment {
|
||||
public:
|
||||
Result<FragmentVector> SplitByRowGroup(compute::Expression predicate);
|
||||
|
||||
/// \brief Return the RowGroups selected by this fragment.
|
||||
const std::vector<int>& row_groups() const {
|
||||
if (row_groups_) return *row_groups_;
|
||||
static std::vector<int> empty;
|
||||
return empty;
|
||||
}
|
||||
|
||||
/// \brief Return the FileMetaData associated with this fragment.
|
||||
const std::shared_ptr<parquet::FileMetaData>& metadata() const { return metadata_; }
|
||||
|
||||
/// \brief Ensure this fragment's FileMetaData is in memory.
|
||||
Status EnsureCompleteMetadata(parquet::arrow::FileReader* reader = NULLPTR);
|
||||
|
||||
/// \brief Return fragment which selects a filtered subset of this fragment's RowGroups.
|
||||
Result<std::shared_ptr<Fragment>> Subset(compute::Expression predicate);
|
||||
Result<std::shared_ptr<Fragment>> Subset(std::vector<int> row_group_ids);
|
||||
|
||||
private:
|
||||
ParquetFileFragment(FileSource source, std::shared_ptr<FileFormat> format,
|
||||
compute::Expression partition_expression,
|
||||
std::shared_ptr<Schema> physical_schema,
|
||||
std::optional<std::vector<int>> row_groups);
|
||||
|
||||
Status SetMetadata(std::shared_ptr<parquet::FileMetaData> metadata,
|
||||
std::shared_ptr<parquet::arrow::SchemaManifest> manifest);
|
||||
|
||||
// Overridden to opportunistically set metadata since a reader must be opened anyway.
|
||||
Result<std::shared_ptr<Schema>> ReadPhysicalSchemaImpl() override {
|
||||
ARROW_RETURN_NOT_OK(EnsureCompleteMetadata());
|
||||
return physical_schema_;
|
||||
}
|
||||
|
||||
/// Return a filtered subset of row group indices.
|
||||
Result<std::vector<int>> FilterRowGroups(compute::Expression predicate);
|
||||
/// Simplify the predicate against the statistics of each row group.
|
||||
Result<std::vector<compute::Expression>> TestRowGroups(compute::Expression predicate);
|
||||
/// Try to count rows matching the predicate using metadata. Expects
|
||||
/// metadata to be present, and expects the predicate to have been
|
||||
/// simplified against the partition expression already.
|
||||
Result<std::optional<int64_t>> TryCountRows(compute::Expression predicate);
|
||||
|
||||
ParquetFileFormat& parquet_format_;
|
||||
|
||||
/// Indices of row groups selected by this fragment,
|
||||
/// or std::nullopt if all row groups are selected.
|
||||
std::optional<std::vector<int>> row_groups_;
|
||||
|
||||
std::vector<compute::Expression> statistics_expressions_;
|
||||
std::vector<bool> statistics_expressions_complete_;
|
||||
std::shared_ptr<parquet::FileMetaData> metadata_;
|
||||
std::shared_ptr<parquet::arrow::SchemaManifest> manifest_;
|
||||
|
||||
friend class ParquetFileFormat;
|
||||
friend class ParquetDatasetFactory;
|
||||
};
|
||||
|
||||
/// \brief Per-scan options for Parquet fragments
|
||||
class ARROW_DS_EXPORT ParquetFragmentScanOptions : public FragmentScanOptions {
|
||||
public:
|
||||
ParquetFragmentScanOptions();
|
||||
std::string type_name() const override { return kParquetTypeName; }
|
||||
|
||||
/// Reader properties. Not all properties are respected: memory_pool comes from
|
||||
/// ScanOptions.
|
||||
std::shared_ptr<parquet::ReaderProperties> reader_properties;
|
||||
/// Arrow reader properties. Not all properties are respected: batch_size comes from
|
||||
/// ScanOptions. Additionally, dictionary columns come from
|
||||
/// ParquetFileFormat::ReaderOptions::dict_columns.
|
||||
std::shared_ptr<parquet::ArrowReaderProperties> arrow_reader_properties;
|
||||
};
|
||||
|
||||
class ARROW_DS_EXPORT ParquetFileWriteOptions : public FileWriteOptions {
|
||||
public:
|
||||
/// \brief Parquet writer properties.
|
||||
std::shared_ptr<parquet::WriterProperties> writer_properties;
|
||||
|
||||
/// \brief Parquet Arrow writer properties.
|
||||
std::shared_ptr<parquet::ArrowWriterProperties> arrow_writer_properties;
|
||||
|
||||
protected:
|
||||
explicit ParquetFileWriteOptions(std::shared_ptr<FileFormat> format)
|
||||
: FileWriteOptions(std::move(format)) {}
|
||||
|
||||
friend class ParquetFileFormat;
|
||||
};
|
||||
|
||||
class ARROW_DS_EXPORT ParquetFileWriter : public FileWriter {
|
||||
public:
|
||||
const std::shared_ptr<parquet::arrow::FileWriter>& parquet_writer() const {
|
||||
return parquet_writer_;
|
||||
}
|
||||
|
||||
Status Write(const std::shared_ptr<RecordBatch>& batch) override;
|
||||
|
||||
private:
|
||||
ParquetFileWriter(std::shared_ptr<io::OutputStream> destination,
|
||||
std::shared_ptr<parquet::arrow::FileWriter> writer,
|
||||
std::shared_ptr<ParquetFileWriteOptions> options,
|
||||
fs::FileLocator destination_locator);
|
||||
|
||||
Future<> FinishInternal() override;
|
||||
|
||||
std::shared_ptr<parquet::arrow::FileWriter> parquet_writer_;
|
||||
|
||||
friend class ParquetFileFormat;
|
||||
};
|
||||
|
||||
/// \brief Options for making a FileSystemDataset from a Parquet _metadata file.
|
||||
struct ParquetFactoryOptions {
|
||||
/// Either an explicit Partitioning or a PartitioningFactory to discover one.
|
||||
///
|
||||
/// If a factory is provided, it will be used to infer a schema for partition fields
|
||||
/// based on file and directory paths then construct a Partitioning. The default
|
||||
/// is a Partitioning which will yield no partition information.
|
||||
///
|
||||
/// The (explicit or discovered) partitioning will be applied to discovered files
|
||||
/// and the resulting partition information embedded in the Dataset.
|
||||
PartitioningOrFactory partitioning{Partitioning::Default()};
|
||||
|
||||
/// For the purposes of applying the partitioning, paths will be stripped
|
||||
/// of the partition_base_dir. Files not matching the partition_base_dir
|
||||
/// prefix will be skipped for partition discovery. The ignored files will still
|
||||
/// be part of the Dataset, but will not have partition information.
|
||||
///
|
||||
/// Example:
|
||||
/// partition_base_dir = "/dataset";
|
||||
///
|
||||
/// - "/dataset/US/sales.csv" -> "US/sales.csv" will be given to the partitioning
|
||||
///
|
||||
/// - "/home/john/late_sales.csv" -> Will be ignored for partition discovery.
|
||||
///
|
||||
/// This is useful for partitioning which parses directory when ordering
|
||||
/// is important, e.g. DirectoryPartitioning.
|
||||
std::string partition_base_dir;
|
||||
|
||||
/// Assert that all ColumnChunk paths are consistent. The parquet spec allows for
|
||||
/// ColumnChunk data to be stored in multiple files, but ParquetDatasetFactory
|
||||
/// supports only a single file with all ColumnChunk data. If this flag is set
|
||||
/// construction of a ParquetDatasetFactory will raise an error if ColumnChunk
|
||||
/// data is not resident in a single file.
|
||||
bool validate_column_chunk_paths = false;
|
||||
};
|
||||
|
||||
/// \brief Create FileSystemDataset from custom `_metadata` cache file.
|
||||
///
|
||||
/// Dask and other systems will generate a cache metadata file by concatenating
|
||||
/// the RowGroupMetaData of multiple parquet files into a single parquet file
|
||||
/// that only contains metadata and no ColumnChunk data.
|
||||
///
|
||||
/// ParquetDatasetFactory creates a FileSystemDataset composed of
|
||||
/// ParquetFileFragment where each fragment is pre-populated with the exact
|
||||
/// number of row groups and statistics for each columns.
|
||||
class ARROW_DS_EXPORT ParquetDatasetFactory : public DatasetFactory {
|
||||
public:
|
||||
/// \brief Create a ParquetDatasetFactory from a metadata path.
|
||||
///
|
||||
/// The `metadata_path` will be read from `filesystem`. Each RowGroup
|
||||
/// contained in the metadata file will be relative to `dirname(metadata_path)`.
|
||||
///
|
||||
/// \param[in] metadata_path path of the metadata parquet file
|
||||
/// \param[in] filesystem from which to open/read the path
|
||||
/// \param[in] format to read the file with.
|
||||
/// \param[in] options see ParquetFactoryOptions
|
||||
static Result<std::shared_ptr<DatasetFactory>> Make(
|
||||
const std::string& metadata_path, std::shared_ptr<fs::FileSystem> filesystem,
|
||||
std::shared_ptr<ParquetFileFormat> format, ParquetFactoryOptions options);
|
||||
|
||||
/// \brief Create a ParquetDatasetFactory from a metadata source.
|
||||
///
|
||||
/// Similar to the previous Make definition, but the metadata can be a Buffer
|
||||
/// and the base_path is explicited instead of inferred from the metadata
|
||||
/// path.
|
||||
///
|
||||
/// \param[in] metadata source to open the metadata parquet file from
|
||||
/// \param[in] base_path used as the prefix of every parquet files referenced
|
||||
/// \param[in] filesystem from which to read the files referenced.
|
||||
/// \param[in] format to read the file with.
|
||||
/// \param[in] options see ParquetFactoryOptions
|
||||
static Result<std::shared_ptr<DatasetFactory>> Make(
|
||||
const FileSource& metadata, const std::string& base_path,
|
||||
std::shared_ptr<fs::FileSystem> filesystem,
|
||||
std::shared_ptr<ParquetFileFormat> format, ParquetFactoryOptions options);
|
||||
|
||||
Result<std::vector<std::shared_ptr<Schema>>> InspectSchemas(
|
||||
InspectOptions options) override;
|
||||
|
||||
Result<std::shared_ptr<Dataset>> Finish(FinishOptions options) override;
|
||||
|
||||
protected:
|
||||
ParquetDatasetFactory(
|
||||
std::shared_ptr<fs::FileSystem> filesystem,
|
||||
std::shared_ptr<ParquetFileFormat> format,
|
||||
std::shared_ptr<parquet::FileMetaData> metadata,
|
||||
std::shared_ptr<parquet::arrow::SchemaManifest> manifest,
|
||||
std::shared_ptr<Schema> physical_schema, std::string base_path,
|
||||
ParquetFactoryOptions options,
|
||||
std::vector<std::pair<std::string, std::vector<int>>> paths_with_row_group_ids)
|
||||
: filesystem_(std::move(filesystem)),
|
||||
format_(std::move(format)),
|
||||
metadata_(std::move(metadata)),
|
||||
manifest_(std::move(manifest)),
|
||||
physical_schema_(std::move(physical_schema)),
|
||||
base_path_(std::move(base_path)),
|
||||
options_(std::move(options)),
|
||||
paths_with_row_group_ids_(std::move(paths_with_row_group_ids)) {}
|
||||
|
||||
std::shared_ptr<fs::FileSystem> filesystem_;
|
||||
std::shared_ptr<ParquetFileFormat> format_;
|
||||
std::shared_ptr<parquet::FileMetaData> metadata_;
|
||||
std::shared_ptr<parquet::arrow::SchemaManifest> manifest_;
|
||||
std::shared_ptr<Schema> physical_schema_;
|
||||
std::string base_path_;
|
||||
ParquetFactoryOptions options_;
|
||||
std::vector<std::pair<std::string, std::vector<int>>> paths_with_row_group_ids_;
|
||||
|
||||
private:
|
||||
Result<std::vector<std::shared_ptr<FileFragment>>> CollectParquetFragments(
|
||||
const Partitioning& partitioning);
|
||||
|
||||
Result<std::shared_ptr<Schema>> PartitionSchema();
|
||||
};
|
||||
|
||||
/// @}
|
||||
|
||||
} // namespace dataset
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,429 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// This API is EXPERIMENTAL.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <functional>
|
||||
#include <iosfwd>
|
||||
#include <memory>
|
||||
#include <optional>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/compute/exec/expression.h"
|
||||
#include "arrow/dataset/type_fwd.h"
|
||||
#include "arrow/dataset/visibility.h"
|
||||
#include "arrow/util/compare.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
namespace dataset {
|
||||
|
||||
constexpr char kFilenamePartitionSep = '_';
|
||||
|
||||
struct ARROW_DS_EXPORT PartitionPathFormat {
|
||||
std::string directory, filename;
|
||||
};
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// Partitioning
|
||||
|
||||
/// \defgroup dataset-partitioning Partitioning API
|
||||
///
|
||||
/// @{
|
||||
|
||||
/// \brief Interface for parsing partition expressions from string partition
|
||||
/// identifiers.
|
||||
///
|
||||
/// For example, the identifier "foo=5" might be parsed to an equality expression
|
||||
/// between the "foo" field and the value 5.
|
||||
///
|
||||
/// Some partitionings may store the field names in a metadata
|
||||
/// store instead of in file paths, for example
|
||||
/// dataset_root/2009/11/... could be used when the partition fields
|
||||
/// are "year" and "month"
|
||||
///
|
||||
/// Paths are consumed from left to right. Paths must be relative to
|
||||
/// the root of a partition; path prefixes must be removed before passing
|
||||
/// the path to a partitioning for parsing.
|
||||
class ARROW_DS_EXPORT Partitioning : public util::EqualityComparable<Partitioning> {
|
||||
public:
|
||||
virtual ~Partitioning() = default;
|
||||
|
||||
/// \brief The name identifying the kind of partitioning
|
||||
virtual std::string type_name() const = 0;
|
||||
|
||||
//// \brief Return whether the partitionings are equal
|
||||
virtual bool Equals(const Partitioning& other) const {
|
||||
return schema_->Equals(other.schema_, /*check_metadata=*/false);
|
||||
}
|
||||
|
||||
/// \brief If the input batch shares any fields with this partitioning,
|
||||
/// produce sub-batches which satisfy mutually exclusive Expressions.
|
||||
struct PartitionedBatches {
|
||||
RecordBatchVector batches;
|
||||
std::vector<compute::Expression> expressions;
|
||||
};
|
||||
virtual Result<PartitionedBatches> Partition(
|
||||
const std::shared_ptr<RecordBatch>& batch) const = 0;
|
||||
|
||||
/// \brief Parse a path into a partition expression
|
||||
virtual Result<compute::Expression> Parse(const std::string& path) const = 0;
|
||||
|
||||
virtual Result<PartitionPathFormat> Format(const compute::Expression& expr) const = 0;
|
||||
|
||||
/// \brief A default Partitioning which always yields scalar(true)
|
||||
static std::shared_ptr<Partitioning> Default();
|
||||
|
||||
/// \brief The partition schema.
|
||||
const std::shared_ptr<Schema>& schema() const { return schema_; }
|
||||
|
||||
protected:
|
||||
explicit Partitioning(std::shared_ptr<Schema> schema) : schema_(std::move(schema)) {}
|
||||
|
||||
std::shared_ptr<Schema> schema_;
|
||||
};
|
||||
|
||||
/// \brief The encoding of partition segments.
|
||||
enum class SegmentEncoding : int8_t {
|
||||
/// No encoding.
|
||||
None = 0,
|
||||
/// Segment values are URL-encoded.
|
||||
Uri = 1,
|
||||
};
|
||||
|
||||
ARROW_DS_EXPORT
|
||||
std::ostream& operator<<(std::ostream& os, SegmentEncoding segment_encoding);
|
||||
|
||||
/// \brief Options for key-value based partitioning (hive/directory).
|
||||
struct ARROW_DS_EXPORT KeyValuePartitioningOptions {
|
||||
/// After splitting a path into components, decode the path components
|
||||
/// before parsing according to this scheme.
|
||||
SegmentEncoding segment_encoding = SegmentEncoding::Uri;
|
||||
};
|
||||
|
||||
/// \brief Options for inferring a partitioning.
|
||||
struct ARROW_DS_EXPORT PartitioningFactoryOptions {
|
||||
/// When inferring a schema for partition fields, yield dictionary encoded types
|
||||
/// instead of plain. This can be more efficient when materializing virtual
|
||||
/// columns, and Expressions parsed by the finished Partitioning will include
|
||||
/// dictionaries of all unique inspected values for each field.
|
||||
bool infer_dictionary = false;
|
||||
/// Optionally, an expected schema can be provided, in which case inference
|
||||
/// will only check discovered fields against the schema and update internal
|
||||
/// state (such as dictionaries).
|
||||
std::shared_ptr<Schema> schema;
|
||||
/// After splitting a path into components, decode the path components
|
||||
/// before parsing according to this scheme.
|
||||
SegmentEncoding segment_encoding = SegmentEncoding::Uri;
|
||||
|
||||
KeyValuePartitioningOptions AsPartitioningOptions() const;
|
||||
};
|
||||
|
||||
/// \brief Options for inferring a hive-style partitioning.
|
||||
struct ARROW_DS_EXPORT HivePartitioningFactoryOptions : PartitioningFactoryOptions {
|
||||
/// The hive partitioning scheme maps null to a hard coded fallback string.
|
||||
std::string null_fallback;
|
||||
|
||||
HivePartitioningOptions AsHivePartitioningOptions() const;
|
||||
};
|
||||
|
||||
/// \brief PartitioningFactory provides creation of a partitioning when the
|
||||
/// specific schema must be inferred from available paths (no explicit schema is known).
|
||||
class ARROW_DS_EXPORT PartitioningFactory {
|
||||
public:
|
||||
virtual ~PartitioningFactory() = default;
|
||||
|
||||
/// \brief The name identifying the kind of partitioning
|
||||
virtual std::string type_name() const = 0;
|
||||
|
||||
/// Get the schema for the resulting Partitioning.
|
||||
/// This may reset internal state, for example dictionaries of unique representations.
|
||||
virtual Result<std::shared_ptr<Schema>> Inspect(
|
||||
const std::vector<std::string>& paths) = 0;
|
||||
|
||||
/// Create a partitioning using the provided schema
|
||||
/// (fields may be dropped).
|
||||
virtual Result<std::shared_ptr<Partitioning>> Finish(
|
||||
const std::shared_ptr<Schema>& schema) const = 0;
|
||||
};
|
||||
|
||||
/// \brief Subclass for the common case of a partitioning which yields an equality
|
||||
/// expression for each segment
|
||||
class ARROW_DS_EXPORT KeyValuePartitioning : public Partitioning {
|
||||
public:
|
||||
/// An unconverted equality expression consisting of a field name and the representation
|
||||
/// of a scalar value
|
||||
struct Key {
|
||||
std::string name;
|
||||
std::optional<std::string> value;
|
||||
};
|
||||
|
||||
Result<PartitionedBatches> Partition(
|
||||
const std::shared_ptr<RecordBatch>& batch) const override;
|
||||
|
||||
Result<compute::Expression> Parse(const std::string& path) const override;
|
||||
|
||||
Result<PartitionPathFormat> Format(const compute::Expression& expr) const override;
|
||||
|
||||
const ArrayVector& dictionaries() const { return dictionaries_; }
|
||||
|
||||
bool Equals(const Partitioning& other) const override;
|
||||
|
||||
protected:
|
||||
KeyValuePartitioning(std::shared_ptr<Schema> schema, ArrayVector dictionaries,
|
||||
KeyValuePartitioningOptions options)
|
||||
: Partitioning(std::move(schema)),
|
||||
dictionaries_(std::move(dictionaries)),
|
||||
options_(options) {
|
||||
if (dictionaries_.empty()) {
|
||||
dictionaries_.resize(schema_->num_fields());
|
||||
}
|
||||
}
|
||||
|
||||
virtual Result<std::vector<Key>> ParseKeys(const std::string& path) const = 0;
|
||||
|
||||
virtual Result<PartitionPathFormat> FormatValues(const ScalarVector& values) const = 0;
|
||||
|
||||
/// Convert a Key to a full expression.
|
||||
Result<compute::Expression> ConvertKey(const Key& key) const;
|
||||
|
||||
Result<std::vector<std::string>> FormatPartitionSegments(
|
||||
const ScalarVector& values) const;
|
||||
Result<std::vector<Key>> ParsePartitionSegments(
|
||||
const std::vector<std::string>& segments) const;
|
||||
|
||||
ArrayVector dictionaries_;
|
||||
KeyValuePartitioningOptions options_;
|
||||
};
|
||||
|
||||
/// \brief DirectoryPartitioning parses one segment of a path for each field in its
|
||||
/// schema. All fields are required, so paths passed to DirectoryPartitioning::Parse
|
||||
/// must contain segments for each field.
|
||||
///
|
||||
/// For example given schema<year:int16, month:int8> the path "/2009/11" would be
|
||||
/// parsed to ("year"_ == 2009 and "month"_ == 11)
|
||||
class ARROW_DS_EXPORT DirectoryPartitioning : public KeyValuePartitioning {
|
||||
public:
|
||||
/// If a field in schema is of dictionary type, the corresponding element of
|
||||
/// dictionaries must be contain the dictionary of values for that field.
|
||||
explicit DirectoryPartitioning(std::shared_ptr<Schema> schema,
|
||||
ArrayVector dictionaries = {},
|
||||
KeyValuePartitioningOptions options = {});
|
||||
|
||||
std::string type_name() const override { return "directory"; }
|
||||
|
||||
bool Equals(const Partitioning& other) const override;
|
||||
|
||||
/// \brief Create a factory for a directory partitioning.
|
||||
///
|
||||
/// \param[in] field_names The names for the partition fields. Types will be
|
||||
/// inferred.
|
||||
static std::shared_ptr<PartitioningFactory> MakeFactory(
|
||||
std::vector<std::string> field_names, PartitioningFactoryOptions = {});
|
||||
|
||||
private:
|
||||
Result<std::vector<Key>> ParseKeys(const std::string& path) const override;
|
||||
|
||||
Result<PartitionPathFormat> FormatValues(const ScalarVector& values) const override;
|
||||
};
|
||||
|
||||
/// \brief The default fallback used for null values in a Hive-style partitioning.
|
||||
static constexpr char kDefaultHiveNullFallback[] = "__HIVE_DEFAULT_PARTITION__";
|
||||
|
||||
struct ARROW_DS_EXPORT HivePartitioningOptions : public KeyValuePartitioningOptions {
|
||||
std::string null_fallback = kDefaultHiveNullFallback;
|
||||
|
||||
static HivePartitioningOptions DefaultsWithNullFallback(std::string fallback) {
|
||||
HivePartitioningOptions options;
|
||||
options.null_fallback = std::move(fallback);
|
||||
return options;
|
||||
}
|
||||
};
|
||||
|
||||
/// \brief Multi-level, directory based partitioning
|
||||
/// originating from Apache Hive with all data files stored in the
|
||||
/// leaf directories. Data is partitioned by static values of a
|
||||
/// particular column in the schema. Partition keys are represented in
|
||||
/// the form $key=$value in directory names.
|
||||
/// Field order is ignored, as are missing or unrecognized field names.
|
||||
///
|
||||
/// For example given schema<year:int16, month:int8, day:int8> the path
|
||||
/// "/day=321/ignored=3.4/year=2009" parses to ("year"_ == 2009 and "day"_ == 321)
|
||||
class ARROW_DS_EXPORT HivePartitioning : public KeyValuePartitioning {
|
||||
public:
|
||||
/// If a field in schema is of dictionary type, the corresponding element of
|
||||
/// dictionaries must be contain the dictionary of values for that field.
|
||||
explicit HivePartitioning(std::shared_ptr<Schema> schema, ArrayVector dictionaries = {},
|
||||
std::string null_fallback = kDefaultHiveNullFallback)
|
||||
: KeyValuePartitioning(std::move(schema), std::move(dictionaries),
|
||||
KeyValuePartitioningOptions()),
|
||||
hive_options_(
|
||||
HivePartitioningOptions::DefaultsWithNullFallback(std::move(null_fallback))) {
|
||||
}
|
||||
|
||||
explicit HivePartitioning(std::shared_ptr<Schema> schema, ArrayVector dictionaries,
|
||||
HivePartitioningOptions options)
|
||||
: KeyValuePartitioning(std::move(schema), std::move(dictionaries), options),
|
||||
hive_options_(options) {}
|
||||
|
||||
std::string type_name() const override { return "hive"; }
|
||||
std::string null_fallback() const { return hive_options_.null_fallback; }
|
||||
const HivePartitioningOptions& options() const { return hive_options_; }
|
||||
|
||||
static Result<std::optional<Key>> ParseKey(const std::string& segment,
|
||||
const HivePartitioningOptions& options);
|
||||
|
||||
bool Equals(const Partitioning& other) const override;
|
||||
|
||||
/// \brief Create a factory for a hive partitioning.
|
||||
static std::shared_ptr<PartitioningFactory> MakeFactory(
|
||||
HivePartitioningFactoryOptions = {});
|
||||
|
||||
private:
|
||||
const HivePartitioningOptions hive_options_;
|
||||
Result<std::vector<Key>> ParseKeys(const std::string& path) const override;
|
||||
|
||||
Result<PartitionPathFormat> FormatValues(const ScalarVector& values) const override;
|
||||
};
|
||||
|
||||
/// \brief Implementation provided by lambda or other callable
|
||||
class ARROW_DS_EXPORT FunctionPartitioning : public Partitioning {
|
||||
public:
|
||||
using ParseImpl = std::function<Result<compute::Expression>(const std::string&)>;
|
||||
|
||||
using FormatImpl =
|
||||
std::function<Result<PartitionPathFormat>(const compute::Expression&)>;
|
||||
|
||||
FunctionPartitioning(std::shared_ptr<Schema> schema, ParseImpl parse_impl,
|
||||
FormatImpl format_impl = NULLPTR, std::string name = "function")
|
||||
: Partitioning(std::move(schema)),
|
||||
parse_impl_(std::move(parse_impl)),
|
||||
format_impl_(std::move(format_impl)),
|
||||
name_(std::move(name)) {}
|
||||
|
||||
std::string type_name() const override { return name_; }
|
||||
|
||||
bool Equals(const Partitioning& other) const override { return false; }
|
||||
|
||||
Result<compute::Expression> Parse(const std::string& path) const override {
|
||||
return parse_impl_(path);
|
||||
}
|
||||
|
||||
Result<PartitionPathFormat> Format(const compute::Expression& expr) const override {
|
||||
if (format_impl_) {
|
||||
return format_impl_(expr);
|
||||
}
|
||||
return Status::NotImplemented("formatting paths from ", type_name(), " Partitioning");
|
||||
}
|
||||
|
||||
Result<PartitionedBatches> Partition(
|
||||
const std::shared_ptr<RecordBatch>& batch) const override {
|
||||
return Status::NotImplemented("partitioning batches from ", type_name(),
|
||||
" Partitioning");
|
||||
}
|
||||
|
||||
private:
|
||||
ParseImpl parse_impl_;
|
||||
FormatImpl format_impl_;
|
||||
std::string name_;
|
||||
};
|
||||
|
||||
class ARROW_DS_EXPORT FilenamePartitioning : public KeyValuePartitioning {
|
||||
public:
|
||||
/// \brief Construct a FilenamePartitioning from its components.
|
||||
///
|
||||
/// If a field in schema is of dictionary type, the corresponding element of
|
||||
/// dictionaries must be contain the dictionary of values for that field.
|
||||
explicit FilenamePartitioning(std::shared_ptr<Schema> schema,
|
||||
ArrayVector dictionaries = {},
|
||||
KeyValuePartitioningOptions options = {});
|
||||
|
||||
std::string type_name() const override { return "filename"; }
|
||||
|
||||
/// \brief Create a factory for a filename partitioning.
|
||||
///
|
||||
/// \param[in] field_names The names for the partition fields. Types will be
|
||||
/// inferred.
|
||||
static std::shared_ptr<PartitioningFactory> MakeFactory(
|
||||
std::vector<std::string> field_names, PartitioningFactoryOptions = {});
|
||||
|
||||
bool Equals(const Partitioning& other) const override;
|
||||
|
||||
private:
|
||||
Result<std::vector<Key>> ParseKeys(const std::string& path) const override;
|
||||
|
||||
Result<PartitionPathFormat> FormatValues(const ScalarVector& values) const override;
|
||||
};
|
||||
|
||||
ARROW_DS_EXPORT std::string StripPrefix(const std::string& path,
|
||||
const std::string& prefix);
|
||||
|
||||
/// \brief Extracts the directory and filename and removes the prefix of a path
|
||||
///
|
||||
/// e.g., `StripPrefixAndFilename("/data/year=2019/c.txt", "/data") ->
|
||||
/// {"year=2019","c.txt"}`
|
||||
ARROW_DS_EXPORT std::string StripPrefixAndFilename(const std::string& path,
|
||||
const std::string& prefix);
|
||||
|
||||
/// \brief Vector version of StripPrefixAndFilename.
|
||||
ARROW_DS_EXPORT std::vector<std::string> StripPrefixAndFilename(
|
||||
const std::vector<std::string>& paths, const std::string& prefix);
|
||||
|
||||
/// \brief Vector version of StripPrefixAndFilename.
|
||||
ARROW_DS_EXPORT std::vector<std::string> StripPrefixAndFilename(
|
||||
const std::vector<fs::FileInfo>& files, const std::string& prefix);
|
||||
|
||||
/// \brief Either a Partitioning or a PartitioningFactory
|
||||
class ARROW_DS_EXPORT PartitioningOrFactory {
|
||||
public:
|
||||
explicit PartitioningOrFactory(std::shared_ptr<Partitioning> partitioning)
|
||||
: partitioning_(std::move(partitioning)) {}
|
||||
|
||||
explicit PartitioningOrFactory(std::shared_ptr<PartitioningFactory> factory)
|
||||
: factory_(std::move(factory)) {}
|
||||
|
||||
PartitioningOrFactory& operator=(std::shared_ptr<Partitioning> partitioning) {
|
||||
return *this = PartitioningOrFactory(std::move(partitioning));
|
||||
}
|
||||
|
||||
PartitioningOrFactory& operator=(std::shared_ptr<PartitioningFactory> factory) {
|
||||
return *this = PartitioningOrFactory(std::move(factory));
|
||||
}
|
||||
|
||||
/// \brief The partitioning (if given).
|
||||
const std::shared_ptr<Partitioning>& partitioning() const { return partitioning_; }
|
||||
|
||||
/// \brief The partition factory (if given).
|
||||
const std::shared_ptr<PartitioningFactory>& factory() const { return factory_; }
|
||||
|
||||
/// \brief Get the partition schema, inferring it with the given factory if needed.
|
||||
Result<std::shared_ptr<Schema>> GetOrInferSchema(const std::vector<std::string>& paths);
|
||||
|
||||
private:
|
||||
std::shared_ptr<PartitioningFactory> factory_;
|
||||
std::shared_ptr<Partitioning> partitioning_;
|
||||
};
|
||||
|
||||
/// @}
|
||||
|
||||
} // namespace dataset
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,27 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// Often-used headers, for precompiling.
|
||||
// If updating this header, please make sure you check compilation speed
|
||||
// before checking in. Adding headers which are not used extremely often
|
||||
// may incur a slowdown, since it makes the precompiled header heavier to load.
|
||||
|
||||
// This API is EXPERIMENTAL.
|
||||
|
||||
#include "arrow/dataset/dataset.h"
|
||||
#include "arrow/dataset/scanner.h"
|
||||
#include "arrow/pch.h"
|
||||
@@ -0,0 +1,33 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// This API is EXPERIMENTAL.
|
||||
|
||||
#include "arrow/dataset/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace dataset {
|
||||
namespace internal {
|
||||
|
||||
/// Register dataset-based exec nodes with the exec node registry
|
||||
///
|
||||
/// This function must be called before using dataset ExecNode factories
|
||||
ARROW_DS_EXPORT void Initialize();
|
||||
|
||||
} // namespace internal
|
||||
} // namespace dataset
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,32 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// This API is EXPERIMENTAL.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "arrow/dataset/visibility.h"
|
||||
#include "arrow/type_fwd.h"
|
||||
|
||||
namespace arrow {
|
||||
namespace dataset {
|
||||
|
||||
// FIXME this is superceded by compute::Expression::Bind
|
||||
ARROW_DS_EXPORT Status CheckProjectable(const Schema& from, const Schema& to);
|
||||
|
||||
} // namespace dataset
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,578 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// This API is EXPERIMENTAL.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/compute/exec/expression.h"
|
||||
#include "arrow/compute/exec/options.h"
|
||||
#include "arrow/compute/type_fwd.h"
|
||||
#include "arrow/dataset/dataset.h"
|
||||
#include "arrow/dataset/projector.h"
|
||||
#include "arrow/dataset/type_fwd.h"
|
||||
#include "arrow/dataset/visibility.h"
|
||||
#include "arrow/io/interfaces.h"
|
||||
#include "arrow/memory_pool.h"
|
||||
#include "arrow/type_fwd.h"
|
||||
#include "arrow/util/async_generator.h"
|
||||
#include "arrow/util/iterator.h"
|
||||
#include "arrow/util/thread_pool.h"
|
||||
#include "arrow/util/type_fwd.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
using RecordBatchGenerator = std::function<Future<std::shared_ptr<RecordBatch>>()>;
|
||||
|
||||
namespace dataset {
|
||||
|
||||
/// \defgroup dataset-scanning Scanning API
|
||||
///
|
||||
/// @{
|
||||
|
||||
constexpr int64_t kDefaultBatchSize = 1 << 17; // 128Ki rows
|
||||
// This will yield 64 batches ~ 8Mi rows
|
||||
constexpr int32_t kDefaultBatchReadahead = 16;
|
||||
constexpr int32_t kDefaultFragmentReadahead = 4;
|
||||
constexpr int32_t kDefaultBytesReadahead = 1 << 25; // 32MiB
|
||||
|
||||
/// Scan-specific options, which can be changed between scans of the same dataset.
|
||||
struct ARROW_DS_EXPORT ScanOptions {
|
||||
/// A row filter (which will be pushed down to partitioning/reading if supported).
|
||||
compute::Expression filter = compute::literal(true);
|
||||
/// A projection expression (which can add/remove/rename columns).
|
||||
compute::Expression projection;
|
||||
|
||||
/// Schema with which batches will be read from fragments. This is also known as the
|
||||
/// "reader schema" it will be used (for example) in constructing CSV file readers to
|
||||
/// identify column types for parsing. Usually only a subset of its fields (see
|
||||
/// MaterializedFields) will be materialized during a scan.
|
||||
std::shared_ptr<Schema> dataset_schema;
|
||||
|
||||
/// Schema of projected record batches. This is independent of dataset_schema as its
|
||||
/// fields are derived from the projection. For example, let
|
||||
///
|
||||
/// dataset_schema = {"a": int32, "b": int32, "id": utf8}
|
||||
/// projection = project({equal(field_ref("a"), field_ref("b"))}, {"a_plus_b"})
|
||||
///
|
||||
/// (no filter specified). In this case, the projected_schema would be
|
||||
///
|
||||
/// {"a_plus_b": int32}
|
||||
std::shared_ptr<Schema> projected_schema;
|
||||
|
||||
/// Maximum row count for scanned batches.
|
||||
int64_t batch_size = kDefaultBatchSize;
|
||||
|
||||
/// How many batches to read ahead within a fragment.
|
||||
///
|
||||
/// Set to 0 to disable batch readahead
|
||||
///
|
||||
/// Note: May not be supported by all formats
|
||||
/// Note: Will be ignored if use_threads is set to false
|
||||
int32_t batch_readahead = kDefaultBatchReadahead;
|
||||
|
||||
/// How many files to read ahead
|
||||
///
|
||||
/// Set to 0 to disable fragment readahead
|
||||
///
|
||||
/// Note: May not be enforced by all scanners
|
||||
/// Note: Will be ignored if use_threads is set to false
|
||||
int32_t fragment_readahead = kDefaultFragmentReadahead;
|
||||
|
||||
/// A pool from which materialized and scanned arrays will be allocated.
|
||||
MemoryPool* pool = arrow::default_memory_pool();
|
||||
|
||||
/// IOContext for any IO tasks
|
||||
///
|
||||
/// Note: The IOContext executor will be ignored if use_threads is set to false
|
||||
io::IOContext io_context;
|
||||
|
||||
/// If true the scanner will scan in parallel
|
||||
///
|
||||
/// Note: If true, this will use threads from both the cpu_executor and the
|
||||
/// io_context.executor
|
||||
/// Note: This must be true in order for any readahead to happen
|
||||
bool use_threads = false;
|
||||
|
||||
/// Fragment-specific scan options.
|
||||
std::shared_ptr<FragmentScanOptions> fragment_scan_options;
|
||||
|
||||
/// Return a vector of FieldRefs that require materialization.
|
||||
///
|
||||
/// This is usually the union of the fields referenced in the projection and the
|
||||
/// filter expression. Examples:
|
||||
///
|
||||
/// - `SELECT a, b WHERE a < 2 && c > 1` => ["a", "b", "a", "c"]
|
||||
/// - `SELECT a + b < 3 WHERE a > 1` => ["a", "b", "a"]
|
||||
///
|
||||
/// This is needed for expression where a field may not be directly
|
||||
/// used in the final projection but is still required to evaluate the
|
||||
/// expression.
|
||||
///
|
||||
/// This is used by Fragment implementations to apply the column
|
||||
/// sub-selection optimization.
|
||||
std::vector<FieldRef> MaterializedFields() const;
|
||||
|
||||
/// Parameters which control when the plan should pause for a slow consumer
|
||||
compute::BackpressureOptions backpressure =
|
||||
compute::BackpressureOptions::DefaultBackpressure();
|
||||
};
|
||||
|
||||
/// Scan-specific options, which can be changed between scans of the same dataset.
|
||||
///
|
||||
/// A dataset consists of one or more individual fragments. A fragment is anything
|
||||
/// that is indepedently scannable, often a file.
|
||||
///
|
||||
/// Batches from all fragments will be converted to a single schema. This unified
|
||||
/// schema is referred to as the "dataset schema" and is the output schema for
|
||||
/// this node.
|
||||
///
|
||||
/// Individual fragments may have schemas that are different from the dataset
|
||||
/// schema. This is sometimes referred to as the physical or fragment schema.
|
||||
/// Conversion from the fragment schema to the dataset schema is a process
|
||||
/// known as evolution.
|
||||
struct ARROW_DS_EXPORT ScanV2Options : public compute::ExecNodeOptions {
|
||||
explicit ScanV2Options(std::shared_ptr<Dataset> dataset)
|
||||
: dataset(std::move(dataset)) {}
|
||||
|
||||
/// \brief The dataset to scan
|
||||
std::shared_ptr<Dataset> dataset;
|
||||
/// \brief A row filter
|
||||
///
|
||||
/// The filter expression should be written against the dataset schema.
|
||||
/// The filter must be unbound.
|
||||
///
|
||||
/// This is an opportunistic pushdown filter. Filtering capabilities will
|
||||
/// vary between formats. If a format is not capable of applying the filter
|
||||
/// then it will ignore it.
|
||||
///
|
||||
/// Each fragment will do its best to filter the data based on the information
|
||||
/// (partitioning guarantees, statistics) available to it. If it is able to
|
||||
/// apply some filtering then it will indicate what filtering it was able to
|
||||
/// apply by attaching a guarantee to the batch.
|
||||
///
|
||||
/// For example, if a filter is x < 50 && y > 40 then a batch may be able to
|
||||
/// apply a guarantee x < 50. Post-scan filtering would then only need to
|
||||
/// consider y > 40 (for this specific batch). The next batch may not be able
|
||||
/// to attach any guarantee and both clauses would need to be applied to that batch.
|
||||
///
|
||||
/// A single guarantee-aware filtering operation should generally be applied to all
|
||||
/// resulting batches. The scan node is not responsible for this.
|
||||
///
|
||||
/// Fields that are referenced by the filter should be included in the `columns` vector.
|
||||
/// The scan node will not automatically fetch fields referenced by the filter
|
||||
/// expression. \see AddFieldsNeededForFilter
|
||||
///
|
||||
/// If the filter references fields that are not included in `columns` this may or may
|
||||
/// not be an error, depending on the format.
|
||||
compute::Expression filter = compute::literal(true);
|
||||
|
||||
/// \brief The columns to scan
|
||||
///
|
||||
/// This is not a simple list of top-level column indices but instead a set of paths
|
||||
/// allowing for partial selection of columns
|
||||
///
|
||||
/// These paths refer to the dataset schema
|
||||
///
|
||||
/// For example, consider the following dataset schema:
|
||||
/// schema({
|
||||
/// field("score", int32()),
|
||||
/// "marker", struct_({
|
||||
/// field("color", utf8()),
|
||||
/// field("location", struct_({
|
||||
/// field("x", float64()),
|
||||
/// field("y", float64())
|
||||
/// })
|
||||
/// })
|
||||
/// })
|
||||
///
|
||||
/// If `columns` is {{0}, {1,1,0}} then the output schema is:
|
||||
/// schema({field("score", int32()), field("x", float64())})
|
||||
///
|
||||
/// If `columns` is {{1,1,1}, {1,1}} then the output schema is:
|
||||
/// schema({
|
||||
/// field("y", float64()),
|
||||
/// field("location", struct_({
|
||||
/// field("x", float64()),
|
||||
/// field("y", float64())
|
||||
/// })
|
||||
/// })
|
||||
std::vector<FieldPath> columns;
|
||||
|
||||
/// \brief Target number of bytes to read ahead in a fragment
|
||||
///
|
||||
/// This limit involves some amount of estimation. Formats typically only know
|
||||
/// batch boundaries in terms of rows (not decoded bytes) and so an estimation
|
||||
/// must be done to guess the average row size. Other formats like CSV and JSON
|
||||
/// must make even more generalized guesses.
|
||||
///
|
||||
/// This is a best-effort guide. Some formats may need to read ahead further,
|
||||
/// for example, if scanning a parquet file that has batches with 100MiB of data
|
||||
/// then the actual readahead will be at least 100MiB
|
||||
///
|
||||
/// Set to 0 to disable readhead. When disabled, the scanner will read the
|
||||
/// dataset one batch at a time
|
||||
///
|
||||
/// This limit applies across all fragments. If the limit is 32MiB and the
|
||||
/// fragment readahead allows for 20 fragments to be read at once then the
|
||||
/// total readahead will still be 32MiB and NOT 20 * 32MiB.
|
||||
int32_t target_bytes_readahead = kDefaultBytesReadahead;
|
||||
|
||||
/// \brief Number of fragments to read ahead
|
||||
///
|
||||
/// Higher readahead will potentially lead to more efficient I/O but will lead
|
||||
/// to the scan operation using more RAM. The default is fairly conservative
|
||||
/// and designed for fast local disks (or slow local spinning disks which cannot
|
||||
/// handle much parallelism anyways). When using a highly parallel remote filesystem
|
||||
/// you will likely want to increase these values.
|
||||
///
|
||||
/// Set to 0 to disable fragment readahead. When disabled the dataset will be scanned
|
||||
/// one fragment at a time.
|
||||
int32_t fragment_readahead = kDefaultFragmentReadahead;
|
||||
/// \brief Options specific to the file format
|
||||
const FragmentScanOptions* format_options = NULLPTR;
|
||||
|
||||
/// \brief Utility method to get a selection representing all columns in a dataset
|
||||
static std::vector<FieldPath> AllColumns(const Schema& dataset_schema);
|
||||
|
||||
/// \brief Utility method to add fields needed for the current filter
|
||||
///
|
||||
/// This method adds any fields that are needed by `filter` which are not already
|
||||
/// included in the list of columns. Any new fields added will be added to the end
|
||||
/// in no particular order.
|
||||
static Status AddFieldsNeededForFilter(ScanV2Options* options);
|
||||
};
|
||||
|
||||
/// \brief Describes a projection
|
||||
struct ARROW_DS_EXPORT ProjectionDescr {
|
||||
/// \brief The projection expression itself
|
||||
/// This expression must be a call to make_struct
|
||||
compute::Expression expression;
|
||||
/// \brief The output schema of the projection.
|
||||
|
||||
/// This can be calculated from the input schema and the expression but it
|
||||
/// is cached here for convenience.
|
||||
std::shared_ptr<Schema> schema;
|
||||
|
||||
/// \brief Create a ProjectionDescr by binding an expression to the dataset schema
|
||||
///
|
||||
/// expression must return a struct type
|
||||
static Result<ProjectionDescr> FromStructExpression(
|
||||
const compute::Expression& expression, const Schema& dataset_schema);
|
||||
|
||||
/// \brief Create a ProjectionDescr from expressions/names for each field
|
||||
static Result<ProjectionDescr> FromExpressions(std::vector<compute::Expression> exprs,
|
||||
std::vector<std::string> names,
|
||||
const Schema& dataset_schema);
|
||||
|
||||
/// \brief Create a default projection referencing fields in the dataset schema
|
||||
static Result<ProjectionDescr> FromNames(std::vector<std::string> names,
|
||||
const Schema& dataset_schema);
|
||||
|
||||
/// \brief Make a projection that projects every field in the dataset schema
|
||||
static Result<ProjectionDescr> Default(const Schema& dataset_schema);
|
||||
};
|
||||
|
||||
/// \brief Utility method to set the projection expression and schema
|
||||
ARROW_DS_EXPORT void SetProjection(ScanOptions* options, ProjectionDescr projection);
|
||||
|
||||
/// \brief Combines a record batch with the fragment that the record batch originated
|
||||
/// from
|
||||
///
|
||||
/// Knowing the source fragment can be useful for debugging & understanding loaded
|
||||
/// data
|
||||
struct TaggedRecordBatch {
|
||||
std::shared_ptr<RecordBatch> record_batch;
|
||||
std::shared_ptr<Fragment> fragment;
|
||||
};
|
||||
using TaggedRecordBatchGenerator = std::function<Future<TaggedRecordBatch>()>;
|
||||
using TaggedRecordBatchIterator = Iterator<TaggedRecordBatch>;
|
||||
|
||||
/// \brief Combines a tagged batch with positional information
|
||||
///
|
||||
/// This is returned when scanning batches in an unordered fashion. This information is
|
||||
/// needed if you ever want to reassemble the batches in order
|
||||
struct EnumeratedRecordBatch {
|
||||
Enumerated<std::shared_ptr<RecordBatch>> record_batch;
|
||||
Enumerated<std::shared_ptr<Fragment>> fragment;
|
||||
};
|
||||
using EnumeratedRecordBatchGenerator = std::function<Future<EnumeratedRecordBatch>()>;
|
||||
using EnumeratedRecordBatchIterator = Iterator<EnumeratedRecordBatch>;
|
||||
|
||||
/// @}
|
||||
|
||||
} // namespace dataset
|
||||
|
||||
template <>
|
||||
struct IterationTraits<dataset::TaggedRecordBatch> {
|
||||
static dataset::TaggedRecordBatch End() {
|
||||
return dataset::TaggedRecordBatch{NULLPTR, NULLPTR};
|
||||
}
|
||||
static bool IsEnd(const dataset::TaggedRecordBatch& val) {
|
||||
return val.record_batch == NULLPTR;
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct IterationTraits<dataset::EnumeratedRecordBatch> {
|
||||
static dataset::EnumeratedRecordBatch End() {
|
||||
return dataset::EnumeratedRecordBatch{
|
||||
IterationEnd<Enumerated<std::shared_ptr<RecordBatch>>>(),
|
||||
IterationEnd<Enumerated<std::shared_ptr<dataset::Fragment>>>()};
|
||||
}
|
||||
static bool IsEnd(const dataset::EnumeratedRecordBatch& val) {
|
||||
return IsIterationEnd(val.fragment);
|
||||
}
|
||||
};
|
||||
|
||||
namespace dataset {
|
||||
|
||||
/// \defgroup dataset-scanning Scanning API
|
||||
///
|
||||
/// @{
|
||||
|
||||
/// \brief A scanner glues together several dataset classes to load in data.
|
||||
/// The dataset contains a collection of fragments and partitioning rules.
|
||||
///
|
||||
/// The fragments identify independently loadable units of data (i.e. each fragment has
|
||||
/// a potentially unique schema and possibly even format. It should be possible to read
|
||||
/// fragments in parallel if desired).
|
||||
///
|
||||
/// The fragment's format contains the logic necessary to actually create a task to load
|
||||
/// the fragment into memory. That task may or may not support parallel execution of
|
||||
/// its own.
|
||||
///
|
||||
/// The scanner is then responsible for creating scan tasks from every fragment in the
|
||||
/// dataset and (potentially) sequencing the loaded record batches together.
|
||||
///
|
||||
/// The scanner should not buffer the entire dataset in memory (unless asked) instead
|
||||
/// yielding record batches as soon as they are ready to scan. Various readahead
|
||||
/// properties control how much data is allowed to be scanned before pausing to let a
|
||||
/// slow consumer catchup.
|
||||
///
|
||||
/// Today the scanner also handles projection & filtering although that may change in
|
||||
/// the future.
|
||||
class ARROW_DS_EXPORT Scanner {
|
||||
public:
|
||||
virtual ~Scanner() = default;
|
||||
|
||||
/// \brief Apply a visitor to each RecordBatch as it is scanned. If multiple threads
|
||||
/// are used (via use_threads), the visitor will be invoked from those threads and is
|
||||
/// responsible for any synchronization.
|
||||
virtual Status Scan(std::function<Status(TaggedRecordBatch)> visitor) = 0;
|
||||
/// \brief Convert a Scanner into a Table.
|
||||
///
|
||||
/// Use this convenience utility with care. This will serially materialize the
|
||||
/// Scan result in memory before creating the Table.
|
||||
virtual Result<std::shared_ptr<Table>> ToTable() = 0;
|
||||
/// \brief Scan the dataset into a stream of record batches. Each batch is tagged
|
||||
/// with the fragment it originated from. The batches will arrive in order. The
|
||||
/// order of fragments is determined by the dataset.
|
||||
///
|
||||
/// Note: The scanner will perform some readahead but will avoid materializing too
|
||||
/// much in memory (this is goverended by the readahead options and use_threads option).
|
||||
/// If the readahead queue fills up then I/O will pause until the calling thread catches
|
||||
/// up.
|
||||
virtual Result<TaggedRecordBatchIterator> ScanBatches() = 0;
|
||||
virtual Result<TaggedRecordBatchGenerator> ScanBatchesAsync() = 0;
|
||||
virtual Result<TaggedRecordBatchGenerator> ScanBatchesAsync(
|
||||
::arrow::internal::Executor* cpu_thread_pool) = 0;
|
||||
/// \brief Scan the dataset into a stream of record batches. Unlike ScanBatches this
|
||||
/// method may allow record batches to be returned out of order. This allows for more
|
||||
/// efficient scanning: some fragments may be accessed more quickly than others (e.g.
|
||||
/// may be cached in RAM or just happen to get scheduled earlier by the I/O)
|
||||
///
|
||||
/// To make up for the out-of-order iteration each batch is further tagged with
|
||||
/// positional information.
|
||||
virtual Result<EnumeratedRecordBatchIterator> ScanBatchesUnordered() = 0;
|
||||
virtual Result<EnumeratedRecordBatchGenerator> ScanBatchesUnorderedAsync() = 0;
|
||||
virtual Result<EnumeratedRecordBatchGenerator> ScanBatchesUnorderedAsync(
|
||||
::arrow::internal::Executor* cpu_thread_pool) = 0;
|
||||
/// \brief A convenience to synchronously load the given rows by index.
|
||||
///
|
||||
/// Will only consume as many batches as needed from ScanBatches().
|
||||
virtual Result<std::shared_ptr<Table>> TakeRows(const Array& indices) = 0;
|
||||
/// \brief Get the first N rows.
|
||||
virtual Result<std::shared_ptr<Table>> Head(int64_t num_rows) = 0;
|
||||
/// \brief Count rows matching a predicate.
|
||||
///
|
||||
/// This method will push down the predicate and compute the result based on fragment
|
||||
/// metadata if possible.
|
||||
virtual Result<int64_t> CountRows() = 0;
|
||||
virtual Future<int64_t> CountRowsAsync() = 0;
|
||||
/// \brief Convert the Scanner to a RecordBatchReader so it can be
|
||||
/// easily used with APIs that expect a reader.
|
||||
virtual Result<std::shared_ptr<RecordBatchReader>> ToRecordBatchReader() = 0;
|
||||
|
||||
/// \brief Get the options for this scan.
|
||||
const std::shared_ptr<ScanOptions>& options() const { return scan_options_; }
|
||||
/// \brief Get the dataset that this scanner will scan
|
||||
virtual const std::shared_ptr<Dataset>& dataset() const = 0;
|
||||
|
||||
protected:
|
||||
explicit Scanner(std::shared_ptr<ScanOptions> scan_options)
|
||||
: scan_options_(std::move(scan_options)) {}
|
||||
|
||||
Result<EnumeratedRecordBatchIterator> AddPositioningToInOrderScan(
|
||||
TaggedRecordBatchIterator scan);
|
||||
|
||||
const std::shared_ptr<ScanOptions> scan_options_;
|
||||
};
|
||||
|
||||
/// \brief ScannerBuilder is a factory class to construct a Scanner. It is used
|
||||
/// to pass information, notably a potential filter expression and a subset of
|
||||
/// columns to materialize.
|
||||
class ARROW_DS_EXPORT ScannerBuilder {
|
||||
public:
|
||||
explicit ScannerBuilder(std::shared_ptr<Dataset> dataset);
|
||||
|
||||
ScannerBuilder(std::shared_ptr<Dataset> dataset,
|
||||
std::shared_ptr<ScanOptions> scan_options);
|
||||
|
||||
ScannerBuilder(std::shared_ptr<Schema> schema, std::shared_ptr<Fragment> fragment,
|
||||
std::shared_ptr<ScanOptions> scan_options);
|
||||
|
||||
/// \brief Make a scanner from a record batch reader.
|
||||
///
|
||||
/// The resulting scanner can be scanned only once. This is intended
|
||||
/// to support writing data from streaming sources or other sources
|
||||
/// that can be iterated only once.
|
||||
static std::shared_ptr<ScannerBuilder> FromRecordBatchReader(
|
||||
std::shared_ptr<RecordBatchReader> reader);
|
||||
|
||||
/// \brief Set the subset of columns to materialize.
|
||||
///
|
||||
/// Columns which are not referenced may not be read from fragments.
|
||||
///
|
||||
/// \param[in] columns list of columns to project. Order and duplicates will
|
||||
/// be preserved.
|
||||
///
|
||||
/// \return Failure if any column name does not exists in the dataset's
|
||||
/// Schema.
|
||||
Status Project(std::vector<std::string> columns);
|
||||
|
||||
/// \brief Set expressions which will be evaluated to produce the materialized
|
||||
/// columns.
|
||||
///
|
||||
/// Columns which are not referenced may not be read from fragments.
|
||||
///
|
||||
/// \param[in] exprs expressions to evaluate to produce columns.
|
||||
/// \param[in] names list of names for the resulting columns.
|
||||
///
|
||||
/// \return Failure if any referenced column does not exists in the dataset's
|
||||
/// Schema.
|
||||
Status Project(std::vector<compute::Expression> exprs, std::vector<std::string> names);
|
||||
|
||||
/// \brief Set the filter expression to return only rows matching the filter.
|
||||
///
|
||||
/// The predicate will be passed down to Sources and corresponding
|
||||
/// Fragments to exploit predicate pushdown if possible using
|
||||
/// partition information or Fragment internal metadata, e.g. Parquet statistics.
|
||||
/// Columns which are not referenced may not be read from fragments.
|
||||
///
|
||||
/// \param[in] filter expression to filter rows with.
|
||||
///
|
||||
/// \return Failure if any referenced columns does not exist in the dataset's
|
||||
/// Schema.
|
||||
Status Filter(const compute::Expression& filter);
|
||||
|
||||
/// \brief Indicate if the Scanner should make use of the available
|
||||
/// ThreadPool found in ScanOptions;
|
||||
Status UseThreads(bool use_threads = true);
|
||||
|
||||
/// \brief Set the maximum number of rows per RecordBatch.
|
||||
///
|
||||
/// \param[in] batch_size the maximum number of rows.
|
||||
/// \returns An error if the number for batch is not greater than 0.
|
||||
///
|
||||
/// This option provides a control limiting the memory owned by any RecordBatch.
|
||||
Status BatchSize(int64_t batch_size);
|
||||
|
||||
/// \brief Set the number of batches to read ahead within a fragment.
|
||||
///
|
||||
/// \param[in] batch_readahead How many batches to read ahead within a fragment
|
||||
/// \returns an error if this number is less than 0.
|
||||
///
|
||||
/// This option provides a control on the RAM vs I/O tradeoff.
|
||||
/// It might not be supported by all file formats, in which case it will
|
||||
/// simply be ignored.
|
||||
Status BatchReadahead(int32_t batch_readahead);
|
||||
|
||||
/// \brief Set the number of fragments to read ahead
|
||||
///
|
||||
/// \param[in] fragment_readahead How many fragments to read ahead
|
||||
/// \returns an error if this number is less than 0.
|
||||
///
|
||||
/// This option provides a control on the RAM vs I/O tradeoff.
|
||||
Status FragmentReadahead(int32_t fragment_readahead);
|
||||
|
||||
/// \brief Set the pool from which materialized and scanned arrays will be allocated.
|
||||
Status Pool(MemoryPool* pool);
|
||||
|
||||
/// \brief Set fragment-specific scan options.
|
||||
Status FragmentScanOptions(std::shared_ptr<FragmentScanOptions> fragment_scan_options);
|
||||
|
||||
/// \brief Override default backpressure configuration
|
||||
Status Backpressure(compute::BackpressureOptions backpressure);
|
||||
|
||||
/// \brief Return the current scan options for the builder.
|
||||
Result<std::shared_ptr<ScanOptions>> GetScanOptions();
|
||||
|
||||
/// \brief Return the constructed now-immutable Scanner object
|
||||
Result<std::shared_ptr<Scanner>> Finish();
|
||||
|
||||
const std::shared_ptr<Schema>& schema() const;
|
||||
const std::shared_ptr<Schema>& projected_schema() const;
|
||||
|
||||
private:
|
||||
std::shared_ptr<Dataset> dataset_;
|
||||
std::shared_ptr<ScanOptions> scan_options_ = std::make_shared<ScanOptions>();
|
||||
};
|
||||
|
||||
/// \brief Construct a source ExecNode which yields batches from a dataset scan.
|
||||
///
|
||||
/// Does not construct associated filter or project nodes.
|
||||
/// Yielded batches will be augmented with fragment/batch indices to enable stable
|
||||
/// ordering for simple ExecPlans.
|
||||
class ARROW_DS_EXPORT ScanNodeOptions : public compute::ExecNodeOptions {
|
||||
public:
|
||||
explicit ScanNodeOptions(std::shared_ptr<Dataset> dataset,
|
||||
std::shared_ptr<ScanOptions> scan_options,
|
||||
bool require_sequenced_output = false)
|
||||
: dataset(std::move(dataset)),
|
||||
scan_options(std::move(scan_options)),
|
||||
require_sequenced_output(require_sequenced_output) {}
|
||||
|
||||
std::shared_ptr<Dataset> dataset;
|
||||
std::shared_ptr<ScanOptions> scan_options;
|
||||
bool require_sequenced_output;
|
||||
};
|
||||
|
||||
/// @}
|
||||
|
||||
namespace internal {
|
||||
ARROW_DS_EXPORT void InitializeScanner(arrow::compute::ExecFactoryRegistry* registry);
|
||||
ARROW_DS_EXPORT void InitializeScannerV2(arrow::compute::ExecFactoryRegistry* registry);
|
||||
} // namespace internal
|
||||
} // namespace dataset
|
||||
} // namespace arrow
|
||||
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,108 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// This API is EXPERIMENTAL.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/compute/type_fwd.h" // IWYU pragma: export
|
||||
#include "arrow/dataset/visibility.h"
|
||||
#include "arrow/filesystem/type_fwd.h" // IWYU pragma: export
|
||||
#include "arrow/type_fwd.h" // IWYU pragma: export
|
||||
|
||||
namespace arrow {
|
||||
namespace dataset {
|
||||
|
||||
class Dataset;
|
||||
class DatasetFactory;
|
||||
using DatasetVector = std::vector<std::shared_ptr<Dataset>>;
|
||||
|
||||
class UnionDataset;
|
||||
class UnionDatasetFactory;
|
||||
|
||||
class Fragment;
|
||||
using FragmentIterator = Iterator<std::shared_ptr<Fragment>>;
|
||||
using FragmentVector = std::vector<std::shared_ptr<Fragment>>;
|
||||
|
||||
class FragmentScanOptions;
|
||||
|
||||
class FileSource;
|
||||
class FileFormat;
|
||||
class FileFragment;
|
||||
class FileWriter;
|
||||
class FileWriteOptions;
|
||||
class FileSystemDataset;
|
||||
class FileSystemDatasetFactory;
|
||||
struct FileSystemDatasetWriteOptions;
|
||||
class WriteNodeOptions;
|
||||
|
||||
/// \brief Controls what happens if files exist in an output directory during a dataset
|
||||
/// write
|
||||
enum class ExistingDataBehavior : int8_t {
|
||||
/// Deletes all files in a directory the first time that directory is encountered
|
||||
kDeleteMatchingPartitions,
|
||||
/// Ignores existing files, overwriting any that happen to have the same name as an
|
||||
/// output file
|
||||
kOverwriteOrIgnore,
|
||||
/// Returns an error if there are any files or subdirectories in the output directory
|
||||
kError,
|
||||
};
|
||||
|
||||
class InMemoryDataset;
|
||||
|
||||
class CsvFileFormat;
|
||||
class CsvFileWriter;
|
||||
class CsvFileWriteOptions;
|
||||
struct CsvFragmentScanOptions;
|
||||
|
||||
class IpcFileFormat;
|
||||
class IpcFileWriter;
|
||||
class IpcFileWriteOptions;
|
||||
class IpcFragmentScanOptions;
|
||||
|
||||
class ParquetFileFormat;
|
||||
class ParquetFileFragment;
|
||||
class ParquetFragmentScanOptions;
|
||||
class ParquetFileWriter;
|
||||
class ParquetFileWriteOptions;
|
||||
|
||||
class Partitioning;
|
||||
class PartitioningFactory;
|
||||
class PartitioningOrFactory;
|
||||
struct KeyValuePartitioningOptions;
|
||||
class DirectoryPartitioning;
|
||||
class HivePartitioning;
|
||||
struct HivePartitioningOptions;
|
||||
class FilenamePartitioning;
|
||||
struct FilenamePartitioningOptions;
|
||||
|
||||
class ScanNodeOptions;
|
||||
struct ScanOptions;
|
||||
|
||||
class Scanner;
|
||||
|
||||
class ScannerBuilder;
|
||||
|
||||
class ScanTask;
|
||||
using ScanTaskVector = std::vector<std::shared_ptr<ScanTask>>;
|
||||
using ScanTaskIterator = Iterator<std::shared_ptr<ScanTask>>;
|
||||
|
||||
} // namespace dataset
|
||||
} // namespace arrow
|
||||
@@ -0,0 +1,50 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
// This API is EXPERIMENTAL.
|
||||
|
||||
#pragma once
|
||||
|
||||
#if defined(_WIN32) || defined(__CYGWIN__)
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(push)
|
||||
#pragma warning(disable : 4251)
|
||||
#else
|
||||
#pragma GCC diagnostic ignored "-Wattributes"
|
||||
#endif
|
||||
|
||||
#ifdef ARROW_DS_STATIC
|
||||
#define ARROW_DS_EXPORT
|
||||
#elif defined(ARROW_DS_EXPORTING)
|
||||
#define ARROW_DS_EXPORT __declspec(dllexport)
|
||||
#else
|
||||
#define ARROW_DS_EXPORT __declspec(dllimport)
|
||||
#endif
|
||||
|
||||
#define ARROW_DS_NO_EXPORT
|
||||
#else // Not Windows
|
||||
#ifndef ARROW_DS_EXPORT
|
||||
#define ARROW_DS_EXPORT __attribute__((visibility("default")))
|
||||
#endif
|
||||
#ifndef ARROW_DS_NO_EXPORT
|
||||
#define ARROW_DS_NO_EXPORT __attribute__((visibility("hidden")))
|
||||
#endif
|
||||
#endif // Non-Windows
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(pop)
|
||||
#endif
|
||||
235
venv/lib/python3.9/site-packages/pyarrow/include/arrow/datum.h
Normal file
235
venv/lib/python3.9/site-packages/pyarrow/include/arrow/datum.h
Normal file
@@ -0,0 +1,235 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
#include <variant>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/array/data.h"
|
||||
#include "arrow/scalar.h"
|
||||
#include "arrow/type.h"
|
||||
#include "arrow/type_traits.h"
|
||||
#include "arrow/util/checked_cast.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
class Array;
|
||||
class ChunkedArray;
|
||||
class RecordBatch;
|
||||
class Table;
|
||||
|
||||
/// \class Datum
|
||||
/// \brief Variant type for various Arrow C++ data structures
|
||||
struct ARROW_EXPORT Datum {
|
||||
enum Kind { NONE, SCALAR, ARRAY, CHUNKED_ARRAY, RECORD_BATCH, TABLE };
|
||||
|
||||
struct Empty {};
|
||||
|
||||
// Datums variants may have a length. This special value indicate that the
|
||||
// current variant does not have a length.
|
||||
static constexpr int64_t kUnknownLength = -1;
|
||||
|
||||
std::variant<Empty, std::shared_ptr<Scalar>, std::shared_ptr<ArrayData>,
|
||||
std::shared_ptr<ChunkedArray>, std::shared_ptr<RecordBatch>,
|
||||
std::shared_ptr<Table>>
|
||||
value;
|
||||
|
||||
/// \brief Empty datum, to be populated elsewhere
|
||||
Datum() = default;
|
||||
|
||||
Datum(const Datum& other) = default;
|
||||
Datum& operator=(const Datum& other) = default;
|
||||
Datum(Datum&& other) = default;
|
||||
Datum& operator=(Datum&& other) = default;
|
||||
|
||||
Datum(std::shared_ptr<Scalar> value) // NOLINT implicit conversion
|
||||
: value(std::move(value)) {}
|
||||
|
||||
Datum(std::shared_ptr<ArrayData> value) // NOLINT implicit conversion
|
||||
: value(std::move(value)) {}
|
||||
|
||||
Datum(ArrayData arg) // NOLINT implicit conversion
|
||||
: value(std::make_shared<ArrayData>(std::move(arg))) {}
|
||||
|
||||
Datum(const Array& value); // NOLINT implicit conversion
|
||||
Datum(const std::shared_ptr<Array>& value); // NOLINT implicit conversion
|
||||
Datum(std::shared_ptr<ChunkedArray> value); // NOLINT implicit conversion
|
||||
Datum(std::shared_ptr<RecordBatch> value); // NOLINT implicit conversion
|
||||
Datum(std::shared_ptr<Table> value); // NOLINT implicit conversion
|
||||
|
||||
// Explicit constructors from const-refs. Can be expensive, prefer the
|
||||
// shared_ptr constructors
|
||||
explicit Datum(const ChunkedArray& value);
|
||||
explicit Datum(const RecordBatch& value);
|
||||
explicit Datum(const Table& value);
|
||||
|
||||
// Cast from subtypes of Array or Scalar to Datum
|
||||
template <typename T, bool IsArray = std::is_base_of_v<Array, T>,
|
||||
bool IsScalar = std::is_base_of_v<Scalar, T>,
|
||||
typename = enable_if_t<IsArray || IsScalar>>
|
||||
Datum(std::shared_ptr<T> value) // NOLINT implicit conversion
|
||||
: Datum(std::shared_ptr<typename std::conditional<IsArray, Array, Scalar>::type>(
|
||||
std::move(value))) {}
|
||||
|
||||
// Cast from subtypes of Array or Scalar to Datum
|
||||
template <typename T, typename TV = typename std::remove_reference_t<T>,
|
||||
bool IsArray = std::is_base_of_v<Array, T>,
|
||||
bool IsScalar = std::is_base_of_v<Scalar, T>,
|
||||
typename = enable_if_t<IsArray || IsScalar>>
|
||||
Datum(T&& value) // NOLINT implicit conversion
|
||||
: Datum(std::make_shared<TV>(std::forward<T>(value))) {}
|
||||
|
||||
// Many Scalars are copyable, let that happen
|
||||
template <typename T, typename = enable_if_t<std::is_base_of_v<Scalar, T>>>
|
||||
Datum(const T& value) // NOLINT implicit conversion
|
||||
: Datum(std::make_shared<T>(value)) {}
|
||||
|
||||
// Convenience constructors
|
||||
explicit Datum(bool value);
|
||||
explicit Datum(int8_t value);
|
||||
explicit Datum(uint8_t value);
|
||||
explicit Datum(int16_t value);
|
||||
explicit Datum(uint16_t value);
|
||||
explicit Datum(int32_t value);
|
||||
explicit Datum(uint32_t value);
|
||||
explicit Datum(int64_t value);
|
||||
explicit Datum(uint64_t value);
|
||||
explicit Datum(float value);
|
||||
explicit Datum(double value);
|
||||
explicit Datum(std::string value);
|
||||
explicit Datum(const char* value);
|
||||
|
||||
// Forward to convenience constructors for a DurationScalar from std::chrono::duration
|
||||
template <template <typename, typename> class StdDuration, typename Rep,
|
||||
typename Period,
|
||||
typename = decltype(DurationScalar{StdDuration<Rep, Period>{}})>
|
||||
explicit Datum(StdDuration<Rep, Period> d) : Datum{DurationScalar(d)} {}
|
||||
|
||||
Datum::Kind kind() const {
|
||||
switch (this->value.index()) {
|
||||
case 0:
|
||||
return Datum::NONE;
|
||||
case 1:
|
||||
return Datum::SCALAR;
|
||||
case 2:
|
||||
return Datum::ARRAY;
|
||||
case 3:
|
||||
return Datum::CHUNKED_ARRAY;
|
||||
case 4:
|
||||
return Datum::RECORD_BATCH;
|
||||
case 5:
|
||||
return Datum::TABLE;
|
||||
default:
|
||||
return Datum::NONE;
|
||||
}
|
||||
}
|
||||
|
||||
const std::shared_ptr<ArrayData>& array() const {
|
||||
return std::get<std::shared_ptr<ArrayData>>(this->value);
|
||||
}
|
||||
|
||||
/// \brief The sum of bytes in each buffer referenced by the datum
|
||||
/// Note: Scalars report a size of 0
|
||||
/// \see arrow::util::TotalBufferSize for caveats
|
||||
int64_t TotalBufferSize() const;
|
||||
|
||||
ArrayData* mutable_array() const { return this->array().get(); }
|
||||
|
||||
std::shared_ptr<Array> make_array() const;
|
||||
|
||||
const std::shared_ptr<ChunkedArray>& chunked_array() const {
|
||||
return std::get<std::shared_ptr<ChunkedArray>>(this->value);
|
||||
}
|
||||
|
||||
const std::shared_ptr<RecordBatch>& record_batch() const {
|
||||
return std::get<std::shared_ptr<RecordBatch>>(this->value);
|
||||
}
|
||||
|
||||
const std::shared_ptr<Table>& table() const {
|
||||
return std::get<std::shared_ptr<Table>>(this->value);
|
||||
}
|
||||
|
||||
const std::shared_ptr<Scalar>& scalar() const {
|
||||
return std::get<std::shared_ptr<Scalar>>(this->value);
|
||||
}
|
||||
|
||||
template <typename ExactType>
|
||||
std::shared_ptr<ExactType> array_as() const {
|
||||
return internal::checked_pointer_cast<ExactType>(this->make_array());
|
||||
}
|
||||
|
||||
template <typename ExactType>
|
||||
const ExactType& scalar_as() const {
|
||||
return internal::checked_cast<const ExactType&>(*this->scalar());
|
||||
}
|
||||
|
||||
bool is_array() const { return this->kind() == Datum::ARRAY; }
|
||||
|
||||
bool is_chunked_array() const { return this->kind() == Datum::CHUNKED_ARRAY; }
|
||||
|
||||
bool is_arraylike() const {
|
||||
return this->kind() == Datum::ARRAY || this->kind() == Datum::CHUNKED_ARRAY;
|
||||
}
|
||||
|
||||
bool is_scalar() const { return this->kind() == Datum::SCALAR; }
|
||||
|
||||
/// \brief True if Datum contains a scalar or array-like data
|
||||
bool is_value() const { return this->is_arraylike() || this->is_scalar(); }
|
||||
|
||||
int64_t null_count() const;
|
||||
|
||||
/// \brief The value type of the variant, if any
|
||||
///
|
||||
/// \return nullptr if no type
|
||||
const std::shared_ptr<DataType>& type() const;
|
||||
|
||||
/// \brief The schema of the variant, if any
|
||||
///
|
||||
/// \return nullptr if no schema
|
||||
const std::shared_ptr<Schema>& schema() const;
|
||||
|
||||
/// \brief The value length of the variant, if any
|
||||
///
|
||||
/// \return kUnknownLength if no type
|
||||
int64_t length() const;
|
||||
|
||||
/// \brief The array chunks of the variant, if any
|
||||
///
|
||||
/// \return empty if not arraylike
|
||||
ArrayVector chunks() const;
|
||||
|
||||
bool Equals(const Datum& other) const;
|
||||
|
||||
bool operator==(const Datum& other) const { return Equals(other); }
|
||||
bool operator!=(const Datum& other) const { return !Equals(other); }
|
||||
|
||||
std::string ToString() const;
|
||||
};
|
||||
|
||||
ARROW_EXPORT void PrintTo(const Datum&, std::ostream*);
|
||||
|
||||
ARROW_EXPORT std::string ToString(Datum::Kind kind);
|
||||
|
||||
} // namespace arrow
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user