mirror of
https://github.com/guohuadeng/app-odoo.git
synced 2025-02-23 04:11:36 +02:00
prepare #I6SC9C 处理azure私聊,app_chatgpt优化,指定用户时增加使用情况 置顶
处理azure 私聊
This commit is contained in:
@@ -37,8 +37,63 @@ Moderation: A fine-tuned model that can detect whether text may be sensitive or
|
||||
GPT-3 A set of models that can understand and generate natural language
|
||||
""")
|
||||
openapi_api_key = fields.Char(string="API Key", help="Provide the API key here")
|
||||
temperature = fields.Float(string='Temperature', default=0.9)
|
||||
max_length = fields.Integer('Max Length', default=300)
|
||||
# begin gpt 参数
|
||||
# 1. stop:表示聊天机器人停止生成回复的条件,可以是一段文本或者一个列表,当聊天机器人生成的回复中包含了这个条件,就会停止继续生成回复。
|
||||
# 2. temperature:控制回复的“新颖度”,值越高,聊天机器人生成的回复越不确定和随机,值越低,聊天机器人生成的回复会更加可预测和常规化。
|
||||
# 3. top_p:与temperature有些类似,也是控制回复的“新颖度”。不同的是,top_p控制的是回复中概率最高的几个可能性的累计概率之和,值越小,生成的回复越保守,值越大,生成的回复越新颖。
|
||||
# 4. frequency_penalty:用于控制聊天机器人回复中出现频率过高的词汇的惩罚程度。聊天机器人会尝试避免在回复中使用频率较高的词汇,以提高回复的多样性和新颖度。
|
||||
# 5. presence_penalty:与frequency_penalty相对,用于控制聊天机器人回复中出现频率较低的词汇的惩罚程度。聊天机器人会尝试在回复中使用频率较低的词汇,以提高回复的多样性和新颖度。
|
||||
max_tokens = fields.Integer('Max response', default=600,
|
||||
help="""
|
||||
Set a limit on the number of tokens per model response.
|
||||
The API supports a maximum of 4000 tokens shared between the prompt
|
||||
(including system message, examples, message history, and user query) and the model's response.
|
||||
One token is roughly 4 characters for typical English text.
|
||||
""")
|
||||
temperature = fields.Float(string='Temperature', default=0.9,
|
||||
help="""
|
||||
Controls randomness. Lowering the temperature means that the model will produce
|
||||
more repetitive and deterministic responses.
|
||||
Increasing the temperature will result in more unexpected or creative responses.
|
||||
Try adjusting temperature or Top P but not both.
|
||||
""")
|
||||
top_p = fields.Float('Top probabilities', default=0.6,
|
||||
help="""
|
||||
Similar to temperature, this controls randomness but uses a different method.
|
||||
Lowering Top P will narrow the model’s token selection to likelier tokens.
|
||||
Increasing Top P will let the model choose from tokens with both high and low likelihood.
|
||||
Try adjusting temperature or Top P but not both
|
||||
""")
|
||||
# 避免使用常用词
|
||||
frequency_penalty = fields.Float('Frequency penalty', default=0.5,
|
||||
help="""
|
||||
Reduce the chance of repeating a token proportionally based on how often it has appeared in the text so far.
|
||||
This decreases the likelihood of repeating the exact same text in a response.
|
||||
""")
|
||||
# 避免使用生僻词
|
||||
presence_penalty = fields.Float('Presence penalty', default=0.2,
|
||||
help="""
|
||||
Reduce the chance of repeating any token that has appeared in the text at all so far.
|
||||
This increases the likelihood of introducing new topics in a response.
|
||||
""")
|
||||
# 停止回复的关键词
|
||||
stop = fields.Char('Stop sequences',
|
||||
help="""
|
||||
Use , to separate the stop key word.
|
||||
Make responses stop at a desired point, such as the end of a sentence or list.
|
||||
Specify up to four sequences where the model will stop generating further tokens in a response.
|
||||
The returned text will not contain the stop sequence.
|
||||
""")
|
||||
# 角色设定
|
||||
sys_content = fields.Char('System message',
|
||||
help="""
|
||||
Give the model instructions about how it should behave and any context it should reference when generating a response.
|
||||
You can describe the assistant’s personality,
|
||||
tell it what it should and shouldn’t answer, and tell it how to format responses.
|
||||
There’s no token limit for this section, but it will be included with every API call,
|
||||
so it counts against the overall token limit.
|
||||
""")
|
||||
# end gpt 参数
|
||||
endpoint = fields.Char('End Point', default='https://api.openai.com/v1/chat/completions')
|
||||
engine = fields.Char('Engine', help='If use Azure, Please input the Model deployment name.')
|
||||
api_version = fields.Char('API Version', default='2022-12-01')
|
||||
@@ -50,32 +105,39 @@ GPT-3 A set of models that can understand and generate natural language
|
||||
def action_disconnect(self):
|
||||
requests.delete('https://chatgpt.com/v1/disconnect')
|
||||
|
||||
def get_ai(self, data, sender_id=False, answer_id=False, **kwargs):
|
||||
def get_ai(self, data, author_id=False, answer_id=False, **kwargs):
|
||||
# 通用方法
|
||||
# sender_id: 请求的 partner_id 对象
|
||||
# author_id: 请求的 partner_id 对象
|
||||
# answer_id: 回答的 partner_id 对象
|
||||
# kwargs,dict 形式的可变参数
|
||||
self.ensure_one()
|
||||
# 前置勾子,一般返回 False,有问题返回响应内容
|
||||
res_pre = self.get_ai_pre(data, sender_id, answer_id, **kwargs)
|
||||
res_pre = self.get_ai_pre(data, author_id, answer_id, **kwargs)
|
||||
if res_pre:
|
||||
return res_pre
|
||||
if hasattr(self, 'get_%s' % self.provider):
|
||||
res = getattr(self, 'get_%s' % self.provider)(data, sender_id, answer_id, **kwargs)
|
||||
res = getattr(self, 'get_%s' % self.provider)(data, author_id, answer_id, **kwargs)
|
||||
else:
|
||||
res = _('No robot provider found')
|
||||
|
||||
# 后置勾子,返回处理后的内容,用于处理敏感词等
|
||||
res_post = self.get_ai_post(res, sender_id, answer_id, **kwargs)
|
||||
res_post = self.get_ai_post(res, author_id, answer_id, **kwargs)
|
||||
return res_post
|
||||
|
||||
def get_ai_pre(self, data, sender_id=False, answer_id=False, **kwargs):
|
||||
def get_ai_pre(self, data, author_id=False, answer_id=False, **kwargs):
|
||||
return False
|
||||
|
||||
def get_ai_post(self, res, sender_id=False, answer_id=False, **kwargs):
|
||||
res = self.filter_sensitive_words(res)
|
||||
def get_ai_post(self, res, author_id=False, answer_id=False, **kwargs):
|
||||
# res = self.filter_sensitive_words(res)
|
||||
return res
|
||||
|
||||
def get_ai_system(self, content=None):
|
||||
# 获取基础ai角色设定, role system
|
||||
sys_content = content or self.sys_content
|
||||
if sys_content:
|
||||
return {"role": "system", "content": sys_content}
|
||||
return {}
|
||||
|
||||
def get_ai_model_info(self):
|
||||
self.ensure_one()
|
||||
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {self.openapi_api_key}"}
|
||||
@@ -109,19 +171,63 @@ GPT-3 A set of models that can understand and generate natural language
|
||||
r_text = 'No response.'
|
||||
raise UserError(r_text)
|
||||
|
||||
def get_openai(self, data, sender_id, answer_id, *args):
|
||||
def get_openai(self, data, author_id, answer_id, **kwargs):
|
||||
self.ensure_one()
|
||||
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {self.openapi_api_key}"}
|
||||
R_TIMEOUT = self.ai_timeout or 120
|
||||
o_url = self.endpoint or "https://api.openai.com/v1/chat/completions"
|
||||
partner_name = 'odoo'
|
||||
# if sender_id:
|
||||
# partner_name = sender_id.name
|
||||
|
||||
if self.stop:
|
||||
stop = self.stop.split(',')
|
||||
else:
|
||||
stop = ["Human:", "AI:"]
|
||||
# 以下处理 open ai
|
||||
# 获取模型信息
|
||||
# list_model = requests.get("https://api.openai.com/v1/models", headers=headers)
|
||||
# model_info = requests.get("https://api.openai.com/v1/models/%s" % ai_model, headers=headers)
|
||||
if self.ai_model == 'dall-e2':
|
||||
if self.ai_model in ['gpt-3.5-turbo', 'gpt-3.5-turbo-0301']:
|
||||
messages = [{"role": "user", "content": data}]
|
||||
# Ai角色设定
|
||||
sys_content = self.get_ai_system(kwargs.get('sys_content'))
|
||||
if sys_content:
|
||||
messages.insert(sys_content)
|
||||
pdata = {
|
||||
"model": self.ai_model,
|
||||
"messages": messages,
|
||||
"temperature": self.temperature or 0.9,
|
||||
"max_tokens": self.max_tokens or 1000,
|
||||
"top_p": self.top_p or 0.6,
|
||||
"frequency_penalty": self.frequency_penalty or 0.5,
|
||||
"presence_penalty": self.presence_penalty or 0.2,
|
||||
"stop": stop
|
||||
}
|
||||
_logger.warning('=====================open input pdata: %s' % pdata)
|
||||
response = requests.post(o_url, data=json.dumps(pdata), headers=headers, timeout=R_TIMEOUT)
|
||||
try:
|
||||
# todo: 将 res 总结果给 self.get_ai_post,再取实际内容 return,将 tokens 计算写在 post 方法中
|
||||
res = response.json()
|
||||
if 'usage' in res:
|
||||
usage = res['usage']
|
||||
prompt_tokens = usage['prompt_tokens']
|
||||
completion_tokens = usage['completion_tokens']
|
||||
total_tokens = usage['total_tokens']
|
||||
vals = {
|
||||
'human_prompt_tokens': author_id.human_prompt_tokens + prompt_tokens,
|
||||
'ai_completion_tokens': author_id.ai_completion_tokens + completion_tokens,
|
||||
'tokens_total': author_id.tokens_total + total_tokens,
|
||||
'used_number': author_id.used_number + 1,
|
||||
}
|
||||
if not author_id.first_ask_time:
|
||||
ask_date = response.headers.get("Date")
|
||||
vals.update({
|
||||
'first_ask_time': ask_date
|
||||
})
|
||||
author_id.write(vals)
|
||||
if 'choices' in res:
|
||||
# for rec in res:
|
||||
# res = rec['message']['content']
|
||||
res = '\n'.join([x['message']['content'] for x in res['choices']])
|
||||
return res
|
||||
except Exception as e:
|
||||
_logger.warning("Get Response Json failed: %s", e)
|
||||
elif self.ai_model == 'dall-e2':
|
||||
# todo: 处理 图像引擎,主要是返回参数到聊天中
|
||||
# image_url = response['data'][0]['url']
|
||||
# https://platform.openai.com/docs/guides/images/introduction
|
||||
@@ -131,56 +237,15 @@ GPT-3 A set of models that can understand and generate natural language
|
||||
"size": "1024x1024",
|
||||
}
|
||||
return '建设中'
|
||||
elif self.ai_model in ['gpt-3.5-turbo', 'gpt-3.5-turbo-0301']:
|
||||
pdata = {
|
||||
"model": self.ai_model,
|
||||
"messages": [{"role": "user", "content": data}],
|
||||
"temperature": 0.9,
|
||||
"max_tokens": self.max_length or 1000,
|
||||
"top_p": 1,
|
||||
"frequency_penalty": 0.0,
|
||||
"presence_penalty": 0.6,
|
||||
"user": partner_name,
|
||||
"stop": ["Human:", "AI:"]
|
||||
}
|
||||
_logger.warning('=====================open input pdata: %s' % pdata)
|
||||
response = requests.post(o_url, data=json.dumps(pdata), headers=headers, timeout=R_TIMEOUT)
|
||||
try:
|
||||
res = response.json()
|
||||
if 'usage' in res:
|
||||
usage = res['usage']
|
||||
prompt_tokens = usage['prompt_tokens']
|
||||
completion_tokens = usage['completion_tokens']
|
||||
total_tokens = usage['total_tokens']
|
||||
vals = {
|
||||
'human_prompt_tokens': sender_id.human_prompt_tokens + prompt_tokens,
|
||||
'ai_completion_tokens': sender_id.ai_completion_tokens + completion_tokens,
|
||||
'tokens_total': sender_id.tokens_total + total_tokens,
|
||||
'used_number': sender_id.used_number + 1,
|
||||
}
|
||||
if not sender_id.first_ask_time:
|
||||
ask_date = response.headers.get("Date")
|
||||
vals.update({
|
||||
'first_ask_time': ask_date
|
||||
})
|
||||
sender_id.write(vals)
|
||||
if 'choices' in res:
|
||||
# for rec in res:
|
||||
# res = rec['message']['content']
|
||||
res = '\n'.join([x['message']['content'] for x in res['choices']])
|
||||
return res
|
||||
except Exception as e:
|
||||
_logger.warning("Get Response Json failed: %s", e)
|
||||
else:
|
||||
pdata = {
|
||||
"model": self.ai_model,
|
||||
"prompt": data,
|
||||
"temperature": 0.9,
|
||||
"max_tokens": self.max_length or 1000,
|
||||
"max_tokens": self.max_tokens or 1000,
|
||||
"top_p": 1,
|
||||
"frequency_penalty": 0.0,
|
||||
"presence_penalty": 0.6,
|
||||
"user": partner_name,
|
||||
"stop": ["Human:", "AI:"]
|
||||
}
|
||||
response = requests.post(o_url, data=json.dumps(pdata), headers=headers, timeout=R_TIMEOUT)
|
||||
@@ -189,9 +254,9 @@ GPT-3 A set of models that can understand and generate natural language
|
||||
res = '\n'.join([x['text'] for x in res['choices']])
|
||||
return res
|
||||
|
||||
return "获取结果超时,请重新跟我聊聊。"
|
||||
return _("Response Timeout, please speak again.")
|
||||
|
||||
def get_azure(self, data, sender_id, answer_id, *args):
|
||||
def get_azure(self, data, author_id, answer_id, **kwargs):
|
||||
self.ensure_one()
|
||||
# only for azure
|
||||
openai.api_type = self.provider
|
||||
@@ -202,21 +267,29 @@ GPT-3 A set of models that can understand and generate natural language
|
||||
raise UserError(_("Please Set your AI robot's API Version first."))
|
||||
openai.api_version = self.api_version
|
||||
openai.api_key = self.openapi_api_key
|
||||
pdata = {
|
||||
"engine": self.engine,
|
||||
"prompt": data,
|
||||
"temperature": self.temperature or 0.9,
|
||||
"max_tokens": self.max_length or 600,
|
||||
"top_p": 0.5,
|
||||
"frequency_penalty": 0,
|
||||
"presence_penalty": 0,
|
||||
"stop": ["Human:", "AI:"],
|
||||
}
|
||||
_logger.warning('=====================azure input data: %s' % pdata)
|
||||
response = openai.Completion.create(pdata)
|
||||
|
||||
if self.stop:
|
||||
stop = self.stop.split(',')
|
||||
else:
|
||||
stop = ["Human:", "AI:"]
|
||||
if isinstance(data, list):
|
||||
messages = data
|
||||
else:
|
||||
messages = [{"role": "user", "content": data}]
|
||||
# Ai角色设定
|
||||
sys_content = self.get_ai_system(kwargs.get('sys_content'))
|
||||
if sys_content:
|
||||
messages.insert(sys_content)
|
||||
response = openai.ChatCompletion.create(
|
||||
engine=self.engine,
|
||||
messages=messages,
|
||||
temperature=self.temperature or 0.9,
|
||||
max_tokens=self.max_tokens or 600,
|
||||
top_p=self.top_p or 0.6,
|
||||
frequency_penalty=self.frequency_penalty or 0.5,
|
||||
presence_penalty=self.presence_penalty or 0.2,
|
||||
stop=stop)
|
||||
if 'choices' in response:
|
||||
res = response['choices'][0]['text'].replace(' .', '.').strip()
|
||||
res = response['choices'][0]['message']['content'].replace(' .', '.').strip()
|
||||
return res
|
||||
else:
|
||||
_logger.warning('=====================azure output data: %s' % response)
|
||||
|
||||
Reference in New Issue
Block a user